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ABSTRACT

A novel system of computer algorithms is formulated to perform onset-guided

source localisation using binaural stimuli. This system, called the spatial

analyser, will analyse spatial attributes including source location. It is

computationally efficient, compatible with streamed binaural data, and uses

psychophysically-valid analysis techniques wherever possible. The main

components of the system are a model of the human auditory periphery, an

onset detector, a running localisation algorithm, and some logic to combine

these.

The onset detector is designed specifically for spatial analysis, using a

combination of linear regression and band-pass filtering techniques to

produce a response that is sensitive to auditory onsets and robust to noise. It

also features an implementation of the precedence effect.

To localise sounds, an efficient method is found for extracting interaural

time difference cues using the interaural cross-correlation function.

Instantaneous interaural time and intensity differences of the binaural signal

are calculated and mapped to lateral angle using a database of interaural cues.

A cross-weighting formula combines the interaural time and intensity data

across frequency bands. Loudness weighting is then applied to every critical

band to produce an output.

Spatial information is handled throughout the localisation algorithm in the

form of lateral angle histograms. These are discrete functions, which specify

localisation strength against lateral angle for any particular combination of

cues.

In a series of validation experiments, the spatial analyser determines the

direction of most sound sources to within 10° in a reverberant environment.

For most sources, this performance is maintained even when a substantial

amount of white noise is added to the audio as a confusing signal. The output

data is also shown to be compatible with auditory source width extraction.

With slight modifications, the spatial analyser can also approximate source

distance.
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1 INTRODUCTION

This research project is intended to fulfil a need in the broadcasting industry

for a reliable real-time visual indicator of the spatial attributes of audio

signals. In a large broadcasting operation, it is not always possible to monitor

the sound from every television and radio channel being transmitted, but it is

usually possible for a single operator to survey many video screens at the same

time. Furthermore, broadcasting suites often have limited floor space and high

levels of background noise, so optimal listening conditions are seldom

possible. This is true especially when dealing with surround formats, as these

require precise placement of loudspeakers and a good deal of space around

the installation. A visual display that represents the changing spatial sound

attributes of an audio input would be useful in these circumstances, so that

the spatial attributes of the programme material can be checked without the

need for surround loudspeakers and a high-quality listening environment.

The invention of a visual display of spatial attributes would require

considerable advances in the simulation of auditory perception, and the

consolidation of many disparate bodies of research. As this project has

progressed, it has become clear that the applications for this research are not

limited to the realisation of a visual display for broadcasting: there may also be

conceivable applications for a working spatial analysis algorithm in the field of

architectural acoustics. As more becomes known about spatial hearing, more

tools are available to designers of environments where good acoustics are

crucial, such as lecture rooms, theatres, and concert halls.

1.1 Definition of ‘spatial attributes’

In order to proceed meaningfully, it is important to ascertain what is meant in

this thesis by ‘spatial attributes’. A basic spatial attribute of a sound is its

location relative to the listener. As with all physical concepts that we can

perceive, the term ‘source location’ may refer to either the actual placement of

a sound source, or its perceived location. When referring to source location, it

must be clear which of these concepts is meant. This may be signalled either

by preceding the term with the word ‘actual’ or ‘perceived’, or by using an

unambiguous psychological term to refer to the perceived phenomenon. For

example, the word ‘location’ can denote either the actual or perceived source

1  Introduction          1       



position, but ‘localisation’ is used to refer an estimated source position

elicited from a human listener or computer algorithm.

Localisation is often deemed to be the fundamental purpose of spatial

hearing, because it is useful to an individual’s survival. For this reason,

perceived source location will now be termed the primary spatial attribute.

The other spatial properties of a sound, secondary spatial attributes, do not

involve source location.

Source width is a convenient example of a secondary spatial attribute. The

term ‘source width’ may refer to the physical concept of breadth, to its

perception, or to both. For example, a grand piano or a car engine may have a

large perceived width at close quarters because the actual width of the source

is large — coherent energy is being radiated over a large physical surface. On

the other hand, sound produced by a solo cello in an orchestra pit may under

some circumstances appear wide, owing not to its size, but to the reverberant

properties of the room. Although the test stimuli used within this project

presume a link between actual and perceived secondary spatial attributes, it is

the perceived spatial attributes that are considered important.

The dichotomy into primary and secondary attributes is necessary because

the majority of spatial hearing research deals only with the problem of

localisation. Early literature that investigated secondary attributes tended to

treat their perception as a unidimensional phenomenon, using a term such as

auditory spaciousness [Blauert and Lindemann 1986] or spatial impression

[Barron and Marshall 1981; Blauert and Lindemann 1986]. These terms are still

in use, but ‘spatial impression’ is now generally treated as an umbrella-term,

to describe a collection of perceived phenomena [Rumsey 2002].

A large part of recent auditorium acoustics literature focuses on auditory or

apparent source width, ASW. This term refers to a phenomenon that is

perceived, but has no direct physical correlate. For example, it is not always

possible to gain an indication of ASW by applying a measuring tape to a

listening room and taking down the dimensions of the sound source and its

environment. However, there are ways of approximating ASW by analysing

recordings, and many analytical methods have been developed in recent

years.

In general, ASW is associated with early room reflections. It is not the only

example of a secondary spatial attribute, but it has attracted considerable

attention in recent years, and along with apparent source distance, will serve

well as an example of a secondary spatial attribute in this project.

An onset-guided spatial analyser for binaural audio
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1.2 Fundamental specifications

A processing algorithm that interfaces with a real-time visual display must

satisfy three requirements. Firstly, it must be compatible with streamed data.

Secondly, it must be basic enough to run in real time on a practical system.

Thirdly, the delay between an audio signal entering the system and an output

being generated must be as short as possible. Ideally, this would be less than

33ms, because this is the shortest video frame period used in broadcasting

(33ms is approximately the reciprocal of the NTSC  frame rate — 30 frames per

second).

An additional set of requirements is imposed by the fact that the algorithm

must mimic, to an extent, the response of the human auditory system in order

to extract spatial information from it. A degree of correlation is required

between what would be perceived by a listener and what is indicated by the

system.

From the beginning it was decided that a binaural format would best suit

this system. A large proportion of recent research on spatial scene analysis

uses binaural source signals, and using the same format would make those

findings directly compatible with this project. Also it would be sensible to use

a format that is designed to be replayed straight into a listener’s ears, as it

already contains most of the cues of interest, and requires no extra processing

before analysis. One further advantage of the binaural format is entirely

pragmatic: binaural audio is simple to record because the microphone array is

self-contained and, when using a modern dummy recording head, already

calibrated. It is also easy to record, store and transfer binaural audio, because

the majority of tape formats and computers are designed to deal with two

audio channels. Furthermore, it is relatively simple to convolve a usable

binaural signal from any audio format that is intended for loudspeaker

reduction.

Binaural data is not without its problems. These are examined in detail in

Section 4.2. These shortcomings reduce the ability of a listener (and therefore

an analyser that is based on human audition) to discriminate between sounds

coming from the front and rear hemispheres, and to discern the angle of

elevation of a source. Many of the problems stem from the fact that a person

listening to a recording cannot interact, even in a simple way, with the

recorded scene. In nature, a listener’s head and body are unconstrained, and

so a feedback loop operates between the listener and the binaural data. When

An onset-guided spatial analyser for binaural audio
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a stationary dummy recording head is replayed, this feedback loop is lost, and

some of the more advanced localisation tasks become extremely difficult, if

not impossible.

Some compromises are necessary. These are covered in more detail in

Chapter 4, but they are important enough to state briefly here. The spatial

analysis algorithm designed within this project will not attempt to

discriminate between the front and rear hemispheres of audition, and will use

the one-dimensional measure of lateral angle instead. Therefore, rear

loudspeakers in a surround set-up will not be perceived explicitly as rear

loudspeakers. This simplification also implies that any existing research which

relates spatial impression to front-to-back energy ratio (for example,

Morimoto [1997]) cannot be taken into account in this project.

1.3 Scope and aims of the thesis

The task of designing of a visual display of spatial attributes of sound can be

divided into two stages. The first stage is to find a way to extract the fluctuating

spatial attributes from the binaural data. Then a method must be developed to

display these attributes. This project concentrates only on the first stage: the

spatial analysis of binaural audio.

Thus, the aim of the thesis is to develop methods for extracting spatial

information from a streamed binaural signal in a way that is

psychoacoustically motivated, computationally efficient, and as precise as

possible. The algorithms that perform this task will be referred to collectively

as the spatial analyser.

The research question is how this spatial analyser may best be realised. A

number of systems for extracting auditory features from streaming data have

emerged over the last decade, most of which focus on timbral or rhythmic

attributes, and relatively few of which are designed to process spatial

information. The best of these spatial systems are able to monitor complex

and arbitrary binaural signals, discern their component auditory events and

sources, and estimate source positions. The principal aim of this project is to

build such a localiser with its basis in known psychoacoustic mechanisms.

This localiser can then be extended to extract secondary spatial attributes.

The techniques of this project are based on the extraction of source

direction. This is because source direction is easy to measure, control, and

compare when recording and analysing test stimuli, and has already been

thoroughly researched. However, the auditory processing methods that are

An onset-guided spatial analyser for binaural audio
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used in this project have been designed specifically to be extended to cover

secondary spatial attributes. It will be shown that, with some minor

modifications, the spatial analyser can be used to extract the attributes of

source width and source distance automatically. It is not unreasonable to

expect that other spatial attributes could also be obtained.

1.4 Thesis method and structure

The topology of the spatial analyser is based on the Zurek model [Zurek 1987],

which is discussed in detail at the beginning of Chapter 2. This model, upon

which Figure 1.1 is based, is a framework for spatial audio analysis. It specifies

the interconnection of a running localisation algorithm, a separate auditory

onset detector, and a method for suppressing the spatial processing of early

room reflections. The output data is obtained from a fourth algorithm, which

Zurek calls simply ‘time averaging’, but is called ‘location gate’ in Figure 1.1.

This revised nomenclature is based on a paper by Griesinger [1997], and

reflects the fact that the algorithm will need to be more sophisticated if

secondary spatial attributes are to be extracted. For localisation, however, its

purpose is identical: to make sense of the data that emerges.

As well as being a starting point for a computer implementation of spatial

hearing, the Zurek model is also psychoacoustically valid. The neurophysics of

spatial hearing is often divided into the same four categories. Thus, the

chapter divisions within this thesis also encapsulate the separate components

of the Zurek model.

ear
signals

locations
source

angle decoder

onset

location gate

ONSET TIMES

ANGLES OF
INCIDENCE

lateral

detector inhibition
early reflection

Figure 1.1.  Processing structure based on the Zurek model [Zurek 1987].
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Chapter 2 of this thesis reviews research into the various aspects of the

precedence effect, and echo suppression in human audition. These

phenomena are integral to spatial perception because they become active in

the first milliseconds after onset, when room reflections are providing their

most fundamental, unambiguous information about the dimensions and

properties of the acoustic environment. In the first 100ms after a new sound

source appears, many secondary spatial attributes are heard that are

perceptually fused with the source, such as width and distance. To understand

these aspects of spatial hearing therefore requires a firm understanding of

echo suppression phenomena.

In Chapter 3, a new auditory onset detector is developed that is specifically

matched to the requirements of the spatial analyser. Aspects of existing onset

detection mechanisms are combined with new techniques in order to enhance

the performance of the algorithm.

Chapter 4 describes the design of the running localisation algorithm, which

extracts spatial information to complement the timing information from the

onset detector. This algorithm is based on a combination of existing

approaches, and has been optimised to run efficiently whilst sacrificing a

minimum of spatial accuracy.

Using a variety of stimuli recorded under controlled conditions, Chapter 5

investigates the performance of the onset detector and localisation algorithm.

These are always tested together, although inferences can be made about the

performance of each component. Specifically, the strengths and weaknesses of

the system, and the causes behind them, can be examined. Some of these

problems are inherent in binaural listening, and are encountered in human

audition; others are specific artefacts of the algorithms used in this project.

Chapter 6 summarises the findings from this project, reviews the

contributions that this thesis has made to the field of spatial hearing, and

stipulates the improvements that may be made to the algorithms in future.

An onset-guided spatial analyser for binaural audio
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1.5 Summary

This thesis describes and tests an algorithm that aims to extract a number of

spatial source attributes from arbitrary binaural data. While existing

algorithms concentrate on source location, the aim of this project is to

produce an analysis method that additionally enables the extraction of

secondary spatial attributes — those that are not directly associated with

localisation, such as the detection of auditory source width and apparent

source distance.

The main application of this technology is the formulation of a new type of

meter for use in broadcasting applications, but the knowledge obtained in

creating this also has uses in the field of auditorium acoustics. The

broadcasting application imposes some requirements on the algorithm.

Firstly, it must be designed in such a way that it is compatible with streamed

audio. Secondly, computational efficiency is an important priority, so that a

real-time implementation is possible. Thirdly, the algorithms should be

physiologically motivated wherever this is feasible.

Input data is required to be in binaural format. This format is helpful

because it requires a physiological approach to be taken to data analysis.

Furthermore, it is easy to acquire, and may be convolved from any

loudspeaker format with little effort. However, the simplicity of binaural

representation imposes limitations on the usefulness of the input data: front-

back discrimination and angle-of-elevation detection cannot be performed

reliably, and will not be attempted.

Zurek’s model is the basis of the structure of this spatial analyser. This

model requires separate components for auditory onset detection, running

source localisation, an echo suppression model, and a system for making

sense of the data that is generated by these components. The Zurek model’s

simple framework also provides a convenient chapter structure for this thesis.

An onset-guided spatial analyser for binaural audio



2 EARLY REFLECTIONS AND

SPATIAL IMPRESSION

The purpose of this chapter is to present a consolidated summary of research

into the precedence effect and echo suppression phenomena in human

audition. A hierarchy of mechanisms are responsible for the ways in which

early lateral reflections are perceived, and these have a profound influence on

spatial perception. Thus, the influence of the precedence effect permeates

much of this thesis. This chapter will therefore form a basis for justifying the

methods that are chosen and the theories that are advanced over the following

chapters. 

This chapter will not attempt to describe in detail every facet of the human

echo suppression mechanism: certain parts of it cannot be implemented

owing to the sophistication of the human auditory system, and certain aspects

are under conscious control [Clifton and Freyman 1997].

Before going any further, it is worth defining the terms ‘precedence effect’

and ‘echo suppression’. These are often used interchangeably, but in their

strictest senses refer to different things. The first mention of the ‘precedence

effect’ is by Wallach et al. [1949], and it refers to the aspect of echo

suppression that is investigated in their paper:

If two sounds that are nearly alike follow each other in close

sequence, they will be heard as one sound; and if an interval of at

least 1ms (0.3 m length of path) separates them, the total sound will

be heard coming from the location of the prior sound. This

localization in terms of the earlier sound we shall term the

“precedence effect.” [Wallach et al. 1949: 819]

This effect was observed to break down for impulsive stimuli when the

inter-click interval was greater than 5ms, or after approximately 40ms when

musical signals were used. While the precedence effect was operating, the

delayed click could influence the perceived direction of the overall auditory

event by a maximum of 7°.

As Hartmann states, the power of the automatic dereverberation that

human listeners unconsciously perform demonstrates that other echo

suppression mechanisms exist. While the influence of the precedence effect is

fading 50ms after the direct sound arrives at the listener, the influence of other
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dereverberation phenomena can extend for several seconds after the onset of

direct sound [Hartmann 1997]. These other mechanisms are commonly

referred to as ‘echo suppression’ phenomena.

Unfortunately, the use of the term ‘echo suppression’ is now controversial

for two reasons. Firstly, the word ‘echo’ was originally used to refer to all room

reflections, but now implies an isolated, individually-audible reflection. The

word is used in this sense by Haas [1951] and Blauert [1997: 224], and

extended into the term ‘echo threshold’ to describe the upper limit of the

precedence effect. Secondly, the word ‘suppression’ infers the existence of a

masking effect, which would prevent the perception of reflections altogether.

While the perceived intensity of the reflection may be reduced by the presence

of the direct sound, it is often just the suppression of the spatial content of a

reflection that is of interest. The extent of this suppression is never total. Even

‘suppressed’ spatial content may be perceived in a number of ways: for

example, as a broadening of the source, or as a sense of environment-related

spatial impression.

The following terminology is used in this chapter: ‘the precedence effect’

refers to the short-term effect explored by Wallach et al., Haas, and their

successors. In the absence of a better umbrella-term, all the phenomena that

rely on the selective inhibition of spatial information — including the

precedence effect — will be referred to as ‘echo suppression’ phenomena. In

turn, the precedence effect will be examined, along with evidence of its

adaptability. The impact of the precedence effect on spatial perception will

then be examined, followed by the more complicated echo suppression

mechanisms. Finally, the Griesinger model will be investigated. This is the

only current elaboration of Zurek’s model (see Chapter 1, Figure 1.1), besides

the one in this thesis, that attempts to account for the perception of secondary

spatial attributes.
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2.1 The precedence effect

Haas approached the precedence effect from the point of view of sound

reinforcement. His experiment investigates the thresholds in time and

intensity for which a loudspeaker-generated ‘reflection’ of speech is perceived

as equally loud as the direct sound, and the thresholds beyond which this

reflection becomes disturbing to a listener [Haas 1951]. These results are

summarised in Figure 2.1.
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Figure 2.1.  Summary of Haas’s data [Haas 1951], obtained from 15

observers. The solid line shows the mean response, and the dashed lines

are the extent of the deviation. The ‘disturbing echo’ criteria is based

upon 50% of subjects referring to the echo as disturbing. This was found

to be a function also of rapidity of speech, reverberation time, and the

timbre of the echo.

There are a number of differences in methodology between the

experiments of Haas and those of Wallach et al. [1949]. Haas uses loudspeaker

delivery as opposed to headphone delivery, and examines the masking-type

suppression of a reflection rather than the extent of its spatial fusion with the

direct sound. For the latter reason, the Haas effect is not the same as the

precedence effect. Nevertheless, the two papers concur as far as the

establishment of the echo threshold for musical stimuli.
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As well as providing broader insights into the precedence effect,

subsequent investigations have uncovered a number of additional

complexities. A series of experiments conducted by Barron [1971] investigate

the effects of a single lateral reflection on spatial impression. These are

essentially investigations into the precedence effect, as the phenomena under

investigation were the extent of image shift caused by the distracting reflection

and the nature of the effect of the reflection on spatial impression. Data from

Barron’s experiments, summarised in Figure 2.2, essentially combine many of

the conditions of Haas’s experiments — loudspeaker listening conditions,

programme-based test stimuli, and a single delayed artificial reflection — with

the spatial echo suppression phenomenon studied by Wallach et al..
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Figure 2.2.  The effect of a single reflection on an orchestral music source.

When the parameters of the reflection fall inside the dashed area, a sense

of spatial impression results. The precedence effect causes image shift

and spatial impression. Data based on a graph by Barron [1971]; summing

localisation data based on information in Blauert [1997] and Hartmann

[1997].

An Onset-Guided Spatial Analyser for Binaural Audio



2  Early Reflections and Spatial Impression          12       

An important series of three experiments by Zurek examines the

precedence effect. Like the experiments of Wallach et al, the effect is

discovered to behave differently depending on the envelope of the stimulus.

The second of Zurek’s experiments employs pairs of 1ms noise bursts,

presented over headphones. In Zurek’s methodology, the latter noise burst of

every pair contains a small interaural time or amplitude difference. Three

pairs of noise bursts are presented in each test interval, separated by 400ms,

but the interaural cues are reversed on either the second or third noise-burst

pair. The listener has to detect this, and is compelled to answer by pushing

one of two buttons corresponding to the second or third pair. The ‘correct’

answer is then indicated by the equipment before the next test interval begins.

In this way, the just-noticeable difference (JND) in each interaural cue can be

determined against inter-burst delay.

The results of this experiment are reasonably uniform across listeners. They

show the JND to be influenced strongly by the inter-burst interval, and concur

with the click-based experiments of Wallach et al.. The JND is minimal, and

thus spatial acuity is most sensitive, for an inter-burst delay of 500µs or less.

This is what Blauert calls the period of summing localisation. The JND climbs

sharply after this, and peaks 2–3ms after onset for both interaural cues. For a

detection rate of 67%, the JND rises to around 250µs or 10dB above threshold.

This is when the precedence effect is regarded to be maximal. The hearing

system regains full spatial acuity when the inter-click interval reaches 10ms.

These findings are very similar to those from the click experiments of Wallach

et al.

Zurek’s third experiment employed a more continuous stimulus: a 50ms

burst of interaurally-coherent noise, in which is hidden a 5ms noise burst

containing an interaural difference in either time or intensity. JNDs were

discovered using the same hidden-reference, forced-choice paradigm. Again,

the precedence effect was found to be maximal at 2–3ms. Although the JND

fell monotonically after this, the loss of spatial acuity persisted throughout the

duration of the noise. These findings are sketched in Figure 2.3.
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Figure 2.3.  Sketch of the results of Zurek [1980]. ‘Spatial acuity’ is plotted

on a relative scale. After 2ms, JNDs for interaural time difference are

about ten times larger than their minimal value, whereas JNDs for

interaural intensity differences are approximately 10dB higher than their

minimal value (approximately 1dB).

2.1.1 Reflection angle and onset rate

Wallach et al., Haas, Barron, and Zurek’s experiments form a comprehensive

overview of the precedence effect. Together, they quantify the time constants

involved in the precedence effect, and indicate the manner in which

reflections of different times and intensities are perceived. They also

demonstrate the extent to which sensitivity to spatial information is affected.

The exact manner in which the rate of onset and stimulus duration affect

the behaviour of the precedence effect, and the extent of the image shift

caused by early reflections, are the subject of some further investigations by

Rakerd and Hartmann.

All the stimuli in the experiments of Hartmann [1983] and Rakerd and

Hartmann [1985; 1986] are based on noise bursts of a minimum length of

50ms. The methodology throughout this series of experiments is based around

the replay of the noise stimulus from one of eight closely-spaced loudspeakers

arranged in an arc around the listener. Localisation performance could be

studied by extracting the angular error between the actual sounding speaker

and the loudspeaker chosen by the listener.

The first of these experiments [Hartmann 1983] was conducted in a hall

with variable acoustics and ceiling height to investigate the distracting effect

of early reflections. The second and third experiments clarified certain aspects

of the findings by moving the experimental set-up to an anechoic chamber

and using a rectangle of particle board to simulate one first-order room
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reflection at a time. Then the effect of onset rate on localisation accuracy was

investigated by employing onset ramps of up to 100ms.

For the noise stimulus, Hartmann discovered that reverberation time had

very little effect on localisation accuracy [Hartmann 1983]. Haas discovered

that lengthening reverberation time slightly increases the echo threshold (the

point at which an echo becomes ‘disturbing’) [Haas 1951]. However,

Hartmann’s experiment does not show a correlation between the echo

suppression aspect of the precedence effect and reverberation time.

Localisation accuracy was enhanced significantly when the ceiling was

lowered [Hartmann 1983]. This suggests that ceiling reflections, which come

from a similar direction to the source, have a less confounding effect on source

localisation than reflections from the side walls. This concurs with the findings

of Barron and Marshall [1981] and Ando and Gottlob [1979], who find that

ceiling reflections contribute some sense of spatial impression to the direct

sound, but that lateral reflections contribute more. Increasing the amount of

spatial impression or perceived breadth of the source also reduces interaural

coherence, and therefore impairs localisability. This inverse relationship

between source width and localisability is widely accepted.

Rakerd and Hartmann [1985] extended these investigations, and confirmed

the earlier findings. When only one acoustic reflection is present, a reflection

from the direction of the floor and ceiling confounds localisation accuracy, but

markedly less than reflections from the side walls.

The level and rate of onset was found to be important to the working of the

precedence effect, and the salience of the distracting reflections. In Rakerd

and Hartmann [1986], an onset time of 100ms (equivalent to a rate of about

500dB per second in this experiment) still triggered the precedence effect, but

the effect begins to fail for onsets longer than this. Rakerd and Hartmann also

found that the upper onset time limit of the precedence effect is dependent on

the delay between direct sound and reflection, with longer delays imposing

longer onset time limits.

2.1.2 Lindemann’s precedence effect model

Lindemann’s simulation of the low-level precedence effect is one of few

serious attempts to model the phenomenon, and it is therefore worth

examining to consolidate the information presented so far. Lindemann’s

model is unusual as its principal aim is to model the human auditory system.

Although a number other precedence effect algorithms exist, such as the ones
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formulated by Huang et al. [1997] for a robotic system, and by Schwartz et al.

[2001] for speech localisation, the motivation behind the inclusion of echo

suppression mechanisms in these systems is pragmatic. Localising transient

sounds in rooms is almost impossible without a precedence effect algorithm,

but modelling the psychophysics of the precedence effect is usually regarded

as less important than producing a computationally efficient and effective

algorithm.

Lindemann’s precedence effect model is designed for incorporation into a

running cross-correlation algorithm. In this algorithm, eighty identical stages

run simultaneously and are linked together, each one testing for a different

interaural time difference. (A block diagram of one stage of Lindemann’s

running cross-correlation algorithm is presented in Chapter 4, Figure 4.9.)

Every stage runs an instance of the precedence effect model, which

Lindemann calls ‘dynamic inhibition’.

The amount of inhibition is controlled by a low-pass filtered version of the

output of the stage. Thus, the more correlated a signal at the stage’s

characteristic interaural time difference, the stronger the inhibition applied.

This inhibition attenuates two neighbouring stages, passing the influence of

the precedence effect downstream. Practically, this cascading does not

significantly affect the output of a correlation stage unless it is adjacent to, and

downstream from, a maximally excited stage. However, it makes the exact

working of the precedence effect algorithm heavily dependent on input signal.

The design of the filter is crucial to this simulation of the precedence effect.

Each successive value depends on the previous value according to the

following formula:

Φ(n) = x(n− 1) + Φ(n − 1) e−1.25×10
−³�
1− x(n − 1)

�
(2.1)

where x(n) is the current input signal value, where 0 ≤ x ≤ 1 , and Φ(n) is

the inhibition constant. This formula is designed to work with an input

sampling frequency of 80kHz. The resulting variation of Φ(n) against time can

be seen in Figure 2.4.

Lindemann’s model simulates only some aspects of the precedence effect.

For a correlated transient sound, it mimics human response fairly well. The

dynamic inhibition reaches a peak within 1–2ms after onset. For naturalistic

signals, this inhibition will be almost complete (Φ(n) = 1) so that further spatial

information will be suppressed entirely. Haas’s findings state that even

suppressed echoes can be amplified so that they are perceived to be of equal
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loudness to the direct sound, and Wallach et al. and Zurek show that some

spatial acuity remains during the operation of the precedence effect. All note a

loss of sensitivity of approximately 10dB. Thus Lindemann’s nearly-complete

inhibition, even for highly-correlated signals, is not accurate. In the

Lindemann model, recovery from transient excitation takes between 10 and

20ms, depending on the correlation of the transient. According to Zurek, this

is entirely representative of the workings of the human auditory system.

However, Lindemann’s model is not so compatible with continuous data.

While Zurek’s listening experiments show a prolonged recovery of spatial

sensitivity when continuous and correlated signals are presented, the

Lindemann model will continue to inhibit the signal maximally until the signal

is removed or its cross-correlation declines. Thus, there is no ‘echo threshold’

in Lindemann’s simulation of the precedence effect.
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Figure 2.4.  Behaviour of Lindemann’s dynamic inhibition model for input

signals of different constant levels [Lindemann 1986].

Left panel: onset characteristic: input signal applied after silence.

Right panel: offset characteristic, after a long input signal is removed.
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Part of the reason for this incompatibility with continuous data is

Lindemann’s reliance on click-based experiments for listener data. There are

two problems with listening experiments that use clicks as stimuli. The first is

that they attempt to make general inferences from extremely short auditory

events with unnaturally rapid onset and decay times. This disregards the

characteristics of music, speech, and most everyday sounds, which have slow

onset and offset characteristics, and periods of sustained activity. The

behaviour of the precedence effect is highly dependent on the envelope of the

sound source under investigation [Rakerd and Hartmann 1986; Mason and

Rumsey 2001]. Unfortunately, this cannot be investigated using click-based

experiments.

Furthermore, a growing body of research suggests that the precedence

effect exhibits neural plasticity: it adapts over a few seconds upon exposure to

a new listening situation [Clifton and Freyman 1997]. After a limited amount of

exposure, listeners can suppress, either consciously or unconsciously, some

strong, isolated reflections that would otherwise be audible. This adaption was

manifested in Wallach et al.’s series of experiments [Wallach et al. 1949], in

which different thresholds for image shift were recorded depending on

whether the delay time between the first and second click was routinely being

increased or decreased during the experiment. This training effect was later

investigated by Saberi and Perrott [1990] who concluded that with sufficient

training, the spatial echo suppression produced by the precedence effect can

be almost entirely annulled in click experiments.

For these reasons, click experiments risk falsely simplifying the precedence

effect. However, if the inter-click interval is kept fairly short, as it is in the

series of experiments conducted by Clifton and Freyman [1997], the auditory

system can adapt as it would to a continuous stimulus, and the effects of

neural plasticity can be included in the experiment.
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2.2 Measuring spatial impression

The precedence effect is central to the perception of spatial impression

[Morimoto 2002]. A number of experiments that investigate the effect of lateral

reflections on spatial perception have already been examined. It is clear from

these experiments that all reflections that arrive from a direction away from

the direct sound contribute a sense of spatial impression. Furthermore, lateral

reflections contribute a greater sense of spatial impression than frontal

reflections. Barron and Marshall [1981] represented these findings by creating

the prototypical metric for spatial impression, called the lateral energy fraction

(Lf), from which many measures are descended:

Lf =
80msØ
t=5ms

r(t) cos φ
® 80msØ
t=0ms

r(t) (2.2)

In this equation, rD(t) is the signal energy, t is the time after onset, and φ is

the angle between a single reflection and the origin of the aural axis. (The aural

axis passes through both of the listener’s ears. Its origin is defined as the

centre of the head.) In this form, the Lf must be calculated from architectural

plans, rather than measured. The incident angles, arrival times, and relative

levels of every reflection that reaches the ears within the first 80ms have to be

determined and combined. The numerator excludes the direct sound and

suppressed early reflections, and the denominator includes these. The cosine

weighting in the numerator ensures a higher Lf for environments with strong

lateral reflections. This lateral energy fraction correlates well with the spatial

impression data elicited from Barron and Marshall’s listening subjects.

Although Kleiner specifies a way of measuring the Lf using two

omnidirectional microphones and digital signal processing [Kleiner 1989] this

system is rather complicated, and too similar to the now-popular interaural

cross-correlation function (IACCF) to have become widely adopted. Unlike the

IACCF, it is also too abstract to be psychologically plausible.

Subsequent investigations rely on a similar measurement that is more

readily obtainable: the early lateral fraction, or LFE . This is obtained from a

two-microphone recording of an impulse response:
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LFE =
80msØ
t=5ms

p28(t)
® 80msØ
t=0ms

p2o(t) (2.3)

p
8
(t) is the waveform recorded by a figure-of-eight microphone with its null

pointed towards the source; p
o
(t) is the waveform recorded at a coincident

omnidirectional microphone, balanced to match the maximal response of the

figure-of-eight. This version of the lateral fraction appears to originate with

Bradley [1994]. In the equations cited by Bradley and by Hidaka et al. [1995],

the numerator has been adjusted to consider signals from t = 0a . It is therefore

assumed that the impulse is positioned centrally, and that no reflections will

arrive within the first few milliseconds.

A more advanced measure of the spatial impression of concert halls can be

generated directly from a binaural impulse response by the interaural cross-

correlation function (IACCF). The following formula is based on the standard

cross-correlation algorithm [BS EN ISO 3382:2000]:

IACCFT²T± = max

������
Ò
T²

T±
pl(t−τ)pr(t+τ)dtñÒ
T²

T±
p²
l
dt
Ò
T²

T±
p²
r
dt

������
τ=500µs

τ=−500µs

(2.4)

IACCF TT represents the interaural cross-correlation function of the signal

between the times T1 and T2. pl(t) and pr(t) are the sound waveforms of the left

and right ears. The use of the IACCF , as a measure of spatial impression

caused by early reflections, is reviewed by Bradley [1994] and Hidaka et al.

[1995].

There is a clear inverse correlation between the IACCF and the lateral

fraction formula. This is because the maximum value of the function will

register the direct, frontal sound, close to τ  = 0 . Lateral reflections will increase

the signal energy within the IACCF and hence increase the denominator of

Equation 2.4, but will not change the numerator when τ  = 0 , so the IACCF will

decline. Frontal reflections, however, will reinforce both the numerator and

the denominator. Bradley discovered a strong correlation (R > 0.8) between

1 − IACCF
 and Lf for hall average responses, over the three octaves of the

audio frequency spectrum centred on 250Hz, 500Hz, and 1kHz. However, the

correlation is smaller for other frequency bands.

There have been a number of refinements to these formulae. Barron and

Marshall [1981] suggest that spatial impression increases with sound pressure

level, and many other researchers concur. A recording can be made to appear
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more spacious simply by adding gain. It is possible that this effect could be an

epiphenomenon of the human auditory system, although this assertion has

not been proven. However, increasing listening level does four things, all of

which will increase perceived spaciousness:

• Critical bands widen as sound pressure level increases, owing to

nonlinearity of travel of the basilar membrane [Ren 2002]. Thus a

loud signal will stimulate cochlear hair cells whose characteristic

frequency range would normally fall outside the range of the

stimulus.

• A number of reflections will become audible that were previously

below the threshold of perception.

• As long as the noise floor of the recording is substantially below the

threshold of perception, adding gain to a recording increases the

onset rate, in terms of dB/s. This changes the way in which the

precedence effect works (see Section 2.1.1).

• If the microphone self-noise is above the threshold of perception,

increasing the gain will cause it to become more audible. This noise

will be decorrelated across the binaural channels, and will therefore

be perceived as acoustically wide.

Results of an experiment by Blauert et al. [1986], which state that perceived

spatial impression varies in proportion to the bandwidth of the reflections,

may also be influenced mainly by associated changes in reflection energy.

There is one further important development of the IACCF, which relates to

frequency selectivity. Hidaka et al. [1995] demonstrated that a newly-devised

measure, the IACCE , correlates closely with a subjective ranking of concert

hall quality.  The IACCE is an interaural cross-correlation function of the first

80ms of a binaural room impulse response, taken for three central octave

bands (500Hz, 1000Hz, 2000Hz) only. This finding concurs with listening

experiments conducted by Schroeder et al. [1974], which demonstrate a strong

link between interaural coherence and hall preference.

2.2.1 Late-arriving sound energy

In most natural listening situations, reflected sound energy that arrives at the

listener more than 50ms after the direct sound will have travelled a far greater

distance than the direct sound. It will have been attenuated by every surface

that has reflected it, so most late reflections are far quieter than the direct

sound. Moreover, the statistical density of reflections increases with time after
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onset. After 50–100ms, the reflection density becomes very high, and

reverberant energy within a room starts to approximate diffuse conditions.

For these reasons, reflections arriving after the echo threshold are seldom

perceived as disturbing echoes. As they arrive too late to be fused perceptually

with the direct sound, they become perceptually associated with the listening

environment, and are heard as supporting reflections. Measurements of early-

and late-reflected energy are therefore divided by referring to the early-

arriving reflection class of measurements as ASW (auditory source width) and

the late-arriving class as LEV (listener envelopment) parameters.

The two phenomena, and the terms ASW and LEV, are introduced in a

paper by Bradley and Soulodre [Bradley and Soulodre 1995]. However, the

different properties of early and late reflections have been appreciated for far

longer. This explains the choice of an 80ms a cut-off period for reflection

analysis in Barron and Marshall’s Lf formula (Equation 2.2).

In concert hall impulse response analysis, 80ms has served almost

universally as the time constant that separates early reflections from late

reflections. It is a convenient compromise between psychophysical

parameters and acoustical ones, mediating between the 50ms time constant

that Haas attributes to the wearing off of the precedence effect, and the

50–100ms time period during which, in a medium-sized hall, the earliest third-

and fourth-order reflections arrive at the listener. Around this time, the

reflection pattern becomes appreciably denser and more diffuse (Figure 2.5).

Attempts to refine the 80ms time constant have arrived at largely similar

values. Soulodre et al. [2003] conducted a series of experiments using an

anechoic recording of Handel’s ‘Water Music’. The closest correlation with

elicited LEV scores for a number of artificial sound fields is provided by an

integration time that is a function of frequency. This value is 140ms for the

octave band centred at 63Hz, and diminishes to 60ms for octave bands of 1kHz

and greater. The fixed integration time that produces results that correlate

best with the subjective LEV data is 105ms.

This experiment does have an important limitation: it is based on one

performance of one type of music. Early research into spatial impression by

Ando [1977] shows that for a single reflection, subjective spatial characteristics

depend on the autocorrelation function of the test signal, and are therefore a

function of its tempo. 
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Figure 2.5.  The earliest 349 acoustic reflections (up to 150ms) of an

omnidirectional source in a medium-sized rectangular hall, approximating

the dimensions of Studio 1 (see Chapter 5).

The lower graph is a count of the discrete reflections shown in the upper

graph. Sudden increases in the density of reflections can clearly be seen

after 50ms, and again after 90ms.

The dimensions of the simulated room are 15×16×7.6m, with the source

positioned 4m from the target. The 60dB reverberation time of the space

has been set to one second, using the Sabine formula.
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2.2.2 Beyond the impulse response

The ASW and LEV measures presented so far are based on the analysis of room

impulse responses. An important advantage of impulse response techniques

that makes them applicable to room acoustics is their simplicity. An impulse

response, unlike a test recording of a musical or vocal source, can be

processed meaningfully with very little effort. Conversely, even basic

automatic spatial analysis of musical or oratory sources cannot be attempted

without a reasonably complex scene analysis model.

The principal drawback of impulse response analysis is that the methods

developed for this field cannot be used for, or easily adapted to, any kind of

signal that is not also impulsive. The IACCF formula, for example, is of limited

use against a complex stream of programme material, as it will fluctuate

considerably depending on the activity of the sound source. A second

disadvantage of impulse responses is the obverse of this situation: that human

listeners cannot process the spatial information they contain. The

unnaturalness of these signals means that the impulse response has little

meaning to the human auditory system, and the room impulse will need to be

convolved with anechoic programme material before human validation of a

listening environment or a new impulse analysis technique is possible.

To compound these complications, it is clear from listening experiments

that the spatial impression produced by an instrument or an ensemble in a

hall is a function of properties of the instrument or ensemble [Mason and

Rumsey 2001] and the speed of music played [Ando 1977] or the speech recited

[Haas 1951], as much as it is a function of the hall’s acoustic properties and the

listening position. The subtleties of spatial impression are not immediately

apparent from an impulse response. Instead, interpretation of impulse

response data requires the ready availability of several other room parameters

and some considerable interpretation.

To answer these problems, at least two dynamic measures of spatial

impression have been created, along with one theoretical paradigm for

extracting spatial information. The two measures are Mason’s interaural cross-

correlation fluctuation function (IACCFF) [Mason 2002] and Griesinger’s

diffuse-field transfer function (DFT) [Griesinger 1998]. These are superficially

similar in approach. The IACCFF and the DFT both analyse short-term

fluctuations in interaural time differences at low frequencies, and follow the
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prototypical flowchart shown in Figure 2.6. The important differences

between them are tabulated in Table 2.1.

ear
signals

filter bank

AUDITORY
PERIPHERY
MODEL

cochlear model

fluctuation function

intensity

calculate
intensity

weighting by

instantaneous ITD
calculation

running
average

band-pass filter

Figure 2.6.  Flowchart of the fluctuation functions devised by Griesinger

[1998] and Mason [2002].

ITD calculation method

Upper frequency limit

ITD band-pass filter range

Intended input signal

cross-correlation

2500Hz

10–125Hz

arbitrary

IACCFF
[Mason 2002]

zero-crossing based

1360Hz

3–17Hz

white noise

DFT
[Griesinger 1998]

Table 2.1.  Comparison of the IACCFF and DFT functions.
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As Mason and Rumsey demonstrate in their comparison of DFT and IACCF

measurements, the limited sophistication of these models restrict their

applications. A deal of interpretation is needed with both measurements, as

their values and characteristics vary depending on the pitch, amplitude

envelope and harmonic content of the source signal, as well as other dynamic

aspects such as vibrato [Mason and Rumsey 2001].

2.3 Griesinger’s model for spatial analysis

In order to implement the precedence effect, a special topology must be

adopted that divides the spatial analyser into four components. This suggests

the topology of Zurek’s model [Zurek 1987], upon which the project’s spatial

analyser is based (see Section 1.4). David Griesinger extends the Zurek model

into a theoretical system that would listen to an arbitrary binaural signal,

accommodate spatial cues from early and late reflections, and hence derive

measures of early and late secondary spatial attributes, in addition to source

location. This is shown in Figure 2.7.

intensity
monaural

RELEASE

location fluctuations
interaural

gate
location

attack release
detector detector

timer
inhibition

continuous spatial
impression (CSI)

single auditory event (foreground)

background
gate

background

START INHIBITION

INHIBIT

S.I. ENDSTART

S.I.

START

gate
auditory event

AFTER DELAY

location startintensity end
impression (ESI)
early spatial envelopment

(BSI)

Figure 2.7.  Griesinger’s model. This includes basic scene analysis features

to extract secondary spatial attributes. Adapted from [Griesinger 1997;

1999].

An Onset-Guided Spatial Analyser for Binaural Audio



2  Early Reflections and Spatial Impression          26       

The importance of onset and offset detection (attack and release) in the

workings of Griesinger’s model extends Zurek’s model, which requires only

an onset detector. Onset detection is the first significant problem to be tackled

in this thesis. The need to complement this algorithm with an offset detector

becomes apparent when the extraction of secondary spatial attributes is

attempted (see Section 5.4.2). 

The second important extension to Zurek’s model is the addition of

background spatial impression (BSI). Griesinger uses this term in the same way

many authors use the term ‘listener envelopment’. According to Griesinger,

reverberant energy that occurs less than 100ms after release of an auditory

event is masked by the human auditory system. This time constant agrees very

closely with the research conducted by Soulodre et al. [2003], into listener

envelopment perception. When processing the room impulse response for

listener envelopment, they found that a minimum cut-off time of 105ms

produced a metric that most closely correlated with their listeners’ data.

Griesinger’s schema is comprehensive in terms of what it defines, and also

in its stipulation of the way in which its constituent processes interrelate to

produce an automatic spatial analyser. This system would be broadly aware of

different auditory objects, and capable of extracting foreground (ASW) and

background (LEV) spatial information. Nevertheless, this system is a

framework. Griesinger has not ventured details of the workings of any of the

high-level processes in the diagram, every one of which presents considerable

research problems and design challenges.

Some amendments to the structure of Griesinger’s model are proposed

within this thesis. Details of these can be found in Section 6.7.1.

2.4 Faller and Merimaa’s model for spatial analysis

Faller and Merimaa’s localisation algorithm [2004] provides an alternative to

Zurek’s structure (see Section 1.4, Figure 1.1). By using interaural coherence as

their only onset cue, Faller and Merimaa eliminate the need for a dedicated

intensity-based onset detector and precedence effect model.

The interaural coherence (IC) function described in Faller and Merimaa’s

paper is identical to the normalised IACCF shown in Equation 2.4.

Theoretically, this function peaks whenever the direct sound from a source

dominates other sources and room reflections, and it is therefore a good

substitute for level-based onset detection.

This approach is attractive because it is computationally simple. The
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localisation algorithm computes a running interaural cross-correlation in

order to extract interaural time differences. All that is required to turn this in

to an onset cue is to normalise the peak value of this cross-correlation

according to the instantaneous input level.

However, the same difficulties of implementation are encountered when

using this approach as with any onset detection algorithm. The first is that the

contrast of IC data under typical listening conditions is not as pronounced as

it is in most idealised, simulated environments (see, for example, the peak

truth value data in Figures 5.3, 5.6, and 5.9, which relate to interaural

coherence). In the experiments in Chapter 5, it will become clear that it is no

small challenge to set a threshold value for onset detection that applies even to

a good majority of musical signals and listening conditions. If the localisation

algorithm is to be applied to generic signals, Faller and Merimaa suggest that

the threshold must adapt slowly over time, and that this could account for

precedence effect phenomena. The modulation of this onset threshold is the

only way to incorporate the precedence effect in Faller and Merimaa’s model,

and therefore it would need to be implemented with great care.

The second significant problem with Faller and Merimaa’s model is that it

depends entirely on interaural coherence measurements. Therefore it cannot

account for onset detection under monaural listening conditions or

amplitude-panned headphone listening, where the IC will be either constant

(in the presence of a signal) or undefined (for silence). Although it is plausible

that the human auditory system employs interaural coherence as an onset

cue, it must also apply a complementary level-based method.

In spite of these shortcomings, Faller and Merimaa prove their approach to

be effective under many conditions. This research has been published fairly

recently, and further investigation would be necessary to determine whether

the IC is worth incorporating into the spatial analyser.

2.5 Summary

The precedence effect is a complicated neural inhibition phenomenon, in

which approximately the first millisecond of sound that arrives at a listener

dominates over later-arriving sound energy. Both the perceived loudness of

the later information and the spatial content it contains are inhibited by

approximately 10dB. Although later-arriving energy can exert a small influence

on the perceived location of the sound, the two are perceived as a single,

spatially-fused auditory object. The precedence effect hence makes the
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auditory localisation system robust to disturbance by early room reflections.

The period during which the precedence effect acts on a stimulus depends

chiefly on its amplitude envelope. For clicks, the influence of the precedence

effect is maximal between 2 and 3ms after onset, and has ceased by 10ms after

onset. For more natural stumuli, which tends to be continuous or slowly-

decaying, the influence of the precedence effect is again maximal between

2–3ms after onset, but can extend about 50ms into the auditory event.

A number of other factors govern the strength of the precedence effect. The

slower the rate of onset, the less pronounced the inhibition will be. Some

research suggests that the precedence effect plays little or no part in sounds

whose rates of onset are less than around 400dB/ms.

To some extent, human listeners will also adapt consciously or

unconsciously to an environment in order to exploit the advantages of echo

suppression, and are able to desensitise themselves to certain types of strong

isolated reflection after a short period of exposure.

Lindemann’s model of the precedence effect [Lindemann 1986] has been

analysed. Theoretically, it would work well with click-based stimuli, but is not

versatile enough to respond accurately to continuous, musical, or speech

stimuli.

Owing to its profound effect on the perception of early reflections, the

precedence effect greatly influences the perception of spatial attributes:

particularly auditory source width (ASW). This attribute has received

considerable attention in recent years, and a number of ways of measuring

source width objectively have been proposed.

Lateral (side wall) reflections decorrelate a frontally-positioned source

more than frontal reflections. Therefore, lateral reflections decrease the

localisability of the direct sound and thus increase its perceived breath more

than frontal reflections. Three early measures of ASW, the Lf , LFE , and IACCF,

incorporated this observation. They process room impulse responses,

weighting  lateral reflections higher than frontal reflections, and express this

as a proportion of total unweighted sound energy. 80ms is usually used as an

empirical cut-off point for early reflection integration in these quotients.

Sound energy arriving after approximately 80ms is not spatially fused with

the direct sound. Instead, it is perceived as supporting reverberation. This

gives rise to the term listener envelopment (LEV) to describe late-arriving

signal energy. Attempts to quantify LEV currently depend on the analysis of

post-80ms reflections in binaural room impulse responses.
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At least two individual attempts have been made to depart from impulse

response analysis, which would allow an environment to be analysed using

more continuous stimuli, and natural sounds such as musical instruments,

ensembles, or speech. Griesinger’s diffuse-field transfer function (DFT) is

designed to process fluctuations in interaural time difference so that

continuous noise can be used to gain an impression of auditory source width.

Mason’s interaural cross-correlation fluctuation function (IACCFF) operates in

a similar way, but has been tested on different instrumental stimuli. Output

data from the IACCFF is heavily dependent on the amplitude envelope and

pitch of the source material used, so knowledge of the source stimulus is

required to interpret it.

Griesinger [1999] proposed a series of extensions to the Zurek model (see

Chapter 1.4) to enable extraction of secondary spatial attributes. Griesinger’s

model includes plausible mechanisms for the extraction of ASW, LEV, and a

number of other secondary spatial attributes. Like the Zurek model, however,

it is only a framework for future development, and none of this has been

realised. Thus, Griesinger’s model cannot presently be verified, either formally

or informally, as a valid approach to spatial attribute extraction.

Faller and Merimaa [2004] describe an alternative to the Zurek model that

employs the interaural cross-correlation function as its sole onset cue. This

framework could be expanded to form a model of the precedence effect, and is

demonstrated to work well under a number of listening conditions. It could

therefore be investigated as a complementary onset cue for the spatial

analyser. However, it would be difficult to adapt this algorithm for generic

listening conditions, and it would not work with monaural or amplitude-

panned signals.
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3 ONSET DETECTION ALGORITHM

Note:  Parts of the onset detection algorithm described in this chapter have been

documented previously in a journal paper [Supper et al. 2005].

This chapter details the design of the onset detector. The presence of this

component of the spatial analyser has been motivated by the previous two

chapters. To discern when an auditory onset occurs is to know when the direct

sound dominates reflected energy in a sound field. This allows the source to be

localised as unambiguously as possible, and sense to be made of the spatial

data.

The following sections propose a new definition of auditory onset that is

compatible with the spatial analysis task. The requirement for a new onset

detection algorithm can then be justified. A specification will then be

formulated for this algorithm, and its design and implementation described.

3.1 Definition of auditory onset

An auditory onset is usually defined as the span of time during which a new

auditory event begins, and in doing so exhibits a rapid and significant increase

in sound energy [Bello and Sandler 2003]. When the purpose of an onset

detector is to assist with a non-spatial machine listening task, such as note

transcription or tempo  detection, this definition is satisfactory. However, the

definition is not adequate for an onset detector used in spatial analysis, for the

reasons described in Section 3.2. 

The term auditory onset has therefore been extended here to cope with the

nature of spatial scene analysis, in which the sound from the onset of an

auditory event, which is mostly reflection-free, allows the source to be

localised. An auditory onset thus defines any region of time during which

directly-arriving sound dominates over reflected energy, so that reliable

localisation information can be extracted from the auditory stream. This

redefinition includes as auditory onsets those quickly-rising attack portions

that are covered by the more usual definition. Under the extended definition,

however, a single auditory event that contains more than one rapid rise in

level can possess more than one auditory onset. Furthermore, if a source is

close to the listener, any steady-state portion of its waveform will furnish
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correct localisation cues, and will therefore constitute part of its onset.

Thus an auditory onset may have a greater duration under its newer

definition, even if only the beginning of this region is used to trigger spatial

processing. The new definition excludes note onsets which are not strong

enough for the direct sound to dominate over the reflected energy, because

these would cause subsequent spatial processing to produce erroneous

results.

Extending the meaning of ‘auditory onset’ has counter-intuitive

ramifications for particular stimuli. For example, under anechoic conditions,

the entire waveform is now classed as an auditory onset. This may cause

problems when non-spatial properties are considered, but for localisation, all

portions of an anechoic waveform contain usable directional cues, so any

portion will suffice for source localisation. Some confusion involving the

redefinition may also occur when considering the auditory onset of a distant

stimulus with a slow attack time. There may be no time during which direct

sound dominates substantially over the reverberant field, so the auditory

event may not possess an auditory onset at all. This can upset the spatial

processing of some stimuli. However, most sounds in nature are not entirely

continuous, and fluctuate in amplitude enough for reflection-free localisation

to be attempted even if they build up slowly.

Furthermore, human listeners can be deceived when a sound field changes

without an onset occurring. This effect is exemplified by the Franssen illusion

[Franssen 1960]. To produce the Franssen illusion, a sine tone is played

through a loudspeaker 30° to the left of a listening subject in a reverberant

room. This tone is faded out immediately as a complementary tone is faded in

to a second loudspeaker 30° to the right of the listener. The complementary

tone is then faded to silence. The listener locates the entire event at the left

loudspeaker only. An engineering, rather than physiological, approach has

been taken in the development of the algorithm detailed in this paper, but it

has been designed to provide a perceptually representative output. For the

purposes of this system, then, if a human listener is misled by such changes, it

is also acceptable for an artificial listener to be misled.
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3.2 The requirement for the new auditory onset detection

algorithm

As described in Chapter 2, the first few milliseconds of incident sound are

largely free from reflections from walls and other physical objects. Many ‘real-

world’ circumstances, and almost all musical or oratory performances, involve

sounds with rapid rising edges and some continuous component heard at a

distance in a room. Under these circumstances, acoustic reflections build up

so quickly that the usual interaural time and level difference cues used for

direction finding cease to be reliable after tens of milliseconds. The human

auditory system uses its echo suppression mechanisms to inhibit spatial

processing of later-arriving sound energy (see Section 2.1). The onset detector

must include, or be informed by, an algorithm that imitates the faster, lower-

level aspects of echo suppression.

For detecting secondary spatial attributes, auditory onsets must be

detected relatively infrequently. Interaural fluctuations more than 100ms after

onset have been demonstrated to be important to the spatial perception of a

sound source (see Chapter 2). If an onset is inferred indiscriminately from

every rapid increase in amplitude, there will seldom be an occasion in many

real sound fields where no onset occurs for 100ms, and this will have a

deleterious effect on the quality of data available to the spatial feature

extraction processes. Also, the more sensitive the onset detector, the greater

the likelihood that individual specular reflections will trigger the detector

falsely. The sensitivity of this detection algorithm must therefore be controlled

so that misleading detections are minimised. No other auditory onset

detection algorithm can be found for which infrequent onset detection is an

explicit specification.

The optimal threshold for level- and rate-based onset detection varies

widely depending upon the stimulus used. Creating a detector that retrieves

onsets at an acceptable rate, and does so in a perceptually valid way, is

therefore not just a matter of desensitising existing algorithms. Piano notes in

particular have chaotic, steeply-fluctuating decay curves, and problems may

also be encountered in cases where the source or the listener is positioned

near a large reflective surface, so that some reflections are particularly early

and strong. The approach described in this paper employs a number of simple

techniques that allow its sensitivity to be altered without affecting the
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reliability of detection. The new algorithm is not immune to false onsets and

missed onsets, but owing to its relative insensitivity to short-term isolated

signal fluctuations, mislocation owing to false detections occurs infrequently.

3.3 Design specification and strategy

The onset detector is designed for an application that requires it to work in

real time. Therefore its algorithm must be able to handle streamed audio.

Although the prototype onset detector works only with stored files, the

necessity for a stream-compatible algorithm has been taken into account.

This algorithm cannot ‘look ahead’ at forthcoming auditory data more than

2ms away. A look-ahead method has been implemented in practice by

allowing a short delay between input and output.

For the most part, the onset detector described in this chapter deliberately

employs techniques that are computationally simple and physiologically

plausible. There is an important exception to this physiological validity: the

dynamic range compression imposed by the inner ear is absent in this

algorithm. Instead, the signal that reaches the processing stage bears a closer

resemblance to the input signal. This approach has enabled the onset detector

to be built using standard signal processing techniques. Although some

perceptual accuracy may have been sacrificed by taking this approach, it has

imparted two worthwhile advantages. Firstly, familiar processes can be

applied to the signal with familiar results. Secondly, avoiding non-linear

processes renders the absolute input level to the system largely unimportant:

the input does not need to be calibrated and scaled with respect to a fixed

sound pressure level.

The ability of the human auditory system to localise sound, to separate two

spatially disparate sound sources, and to hear subtleties within them, is better

under binaural conditions than it is under monaural conditions. When one ear

is damaged or obstructed, localisation becomes more difficult and masking

thresholds are raised [Moore 2000]. Unfortunately, no model of this binaural

interaction has been universally accepted. For pragmatic reasons, the onset

detector defined here follows the example set by almost every other algorithm,

and employs separate monaural processors for each ear. The outputs from

these processors are combined to increase the algorithm’s sensitivity over

monaural conditions.

There is a wealth of published research that concerns auditory onset

detection, and the strategies that have been attempted over the years are
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varied. However, a quantity of this research describes algorithms that are not

psychoacoustically inspired, and hence are not directly applicable to this

research. Furthermore, there is no previous published work that relates to the

detection of auditory onsets that are relevant to spatial scene analysis, as

defined in the preceding section. However, a number of existing onset

detectors are relevant to the development of this algorithm, and the

similarities and differences between these processes and the one described

here is included in Section 3.4. 
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3.4 System details
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Figure 3.1.  Overview of the onset detection algorithm.

Figure 3.1 shows an overview of the monaural onset detector algorithm. Its

input data are 24 filtered versions of each ear signal: this gives 48 audio-rate

signals. It outputs a two-valued function that equals unity whenever an onset
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is detected and is zero at all other times, together with the set of the filter

bands that contributed most significantly to each onset decision. Only those

frequency bands with substantial rising signal level, and therefore the largest

proportion of direct sound to reverberant sound and noise, need to be

considered in the spatial processing. The detector is split into four sections,

each of which will be considered separately.

Input conditioning reduces the data rate of the input signal, in order to

speed up processing and to filter out information that is irrelevant to onset

detection. This generates the envelope function, e(t). Two independent

functions, the intermediate signals, are calculated from e(t). One of these, a(t),

produces temporally accurate, high-contrast information pertaining to onsets,

but is also sensitive to false onsets. The other function, r(t), has a lower

contrast, is slower to rise and fall, and therefore is less sensitive to slow onsets.

r(t) is also constructed to be immune to disruptions caused by background

noise. These signals are expressed in the [0 1] domain to preserve their

continuous nature and to allow standard fuzzy logic processes to be applied to

them. They are combined by piecewise multiplication to create ar(t). This is a

high-contrast function that is insensitive to false onsets.

Forty-eight versions of ar(t) are calculated across the two channels and 24

frequency bands. These are then combined and summed into one function of

time, Σ(t). Three processes, the frequency band recombination stage, generate

this signal. The final onset decision is based entirely upon Σ(t).

Lower frequency bands have longer impulse responses that spread energy

over a longer period of time than higher bands. This is partly compensated by

using higher bandwidths at lower frequencies, and partly by the first of the

recombination functions, ‘thinning and holding’. This removes weaker

fluctuations and aligns near-coincidences of ar(t) peaks across frequency

bands. The second function cross-weights the output signals in favour of

coincident peaks that occur across adjacent bands. All bands are summed in

the third stage to derive Σ(t).

Finally, a simple binary decision maker determines when the fluctuations

in this sum signal constitute an onset. When an onset is detected, those bands

whose individual contributions to the sum exceed a secondary threshold are

flagged as contributing towards it. These procedures are covered in detail in

the following sections.
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3.4.1 Filter bank and rectification

The filter bank used in this project is based on Slaney’s efficient

implementation of a gammatone filter bank [Slaney 1993]. Low and high cutoff

frequencies for each of these filters were taken from Gaik’s cross-correlation

model [Gaik 1993: 100]. These parameters are reproduced in Table 3.1 and

Figure 3.2. Each channel of the incoming binaural signal is thus divided into

24 critical bands. Most of the frequency bands are around a quarter of an

octave wide (Q = 5.79). The lower frequency bands are wider to model the

bandwidths of critical bands. This widening also reduces the length of impulse

responses, preventing the disruption of timing information that would

otherwise occur.

It was necessary to add two high-pass filters to the Slaney filter bank. These

block DC and extreme LF content that may otherwise leak through the lowest

two bands and cause level-detection problems after rectification. One filter is

cascaded to the Band 1 filter output, and the other to the Band 2 filter output.

First-order Butterworth filters have been chosen, with cutoff frequencies of

18Hz.
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5.42
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4.30

3.93

2000

2320

2700

3150

3700

4400
5300

6400

7700

9500

12000

280

320
380

450

550

700

900
1100

1300

1800

2500

3500

Table 3.1.  Lower and upper frequencies for each band of the filter bank,

adapted from Gaik’s cross-correlation model [Gaik 1993]. The centre

frequency, bandwidth, and quality factor (Q) of each band are also

included.
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Figure 3.2.  Filter bank amplitude responses. Even-numbered bands are

shown as dashed lines for clarity.

The inner ear is approximated by full-wave rectification followed by low-

pass filtering. The latter is performed by a second-order Butterworth filter with

a cut-off frequency of 1100Hz. It is more usual, particularly in onset detection

systems that include inner hair cell transduction models (such as [Smith 2001]

and [Martin 1995b]), to use half-wave rectification. Although full-wave

rectification does not correspond to any neurophysical model, it produces an

output signal with a higher level, lower ripple, and the same rise time as half-

wave rectification. Full-wave rectification is therefore preferable for signal

processing. The Butterworth filters simulate the refractoriness of inner hair

cells. In the cochlea, this refractoriness causes the break-up of neural phase-

locking at mid-frequencies. It is important to account for this phenomenon in

other areas of the spatial analysis algorithm. Although Hafter and Carrier

[1972: 1852] attribute phase-locking breakdown to frequencies of over 5kHz,

lower frequencies are often used in simulations because the wavelength of

sound at 1100Hz begins to match the dimensions of a listener’s head. Thus,

the human auditory system’s reliance on interaural time differences begins to

decrease above this frequency. This approach to the selection of cut-off

frequency has also been employed in the periphery models of Blauert and

Cobben [1978] and Lindemann [1986], who employed a first-order low-pass

filter with a cut-off frequency of 800Hz.
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The cochlear model used in this algorithm is fairly basic compared with

many of the cochlear models that are available, such as the Meddis model

[Meddis et al. 1990] used in Martin’s localisation system [Martin 1995b], and

many of the inner hair cell transduction models reviewed by Mountain and

Hubbard [1996]. However, the aim of simulating the action of the inner ear

must be balanced with the need to extract data with a minimum of processing.

The advantage of the approach used here is that it preserves the linear scale of

the input data. The justification for this decision was presented in Section 3.3.

3.4.2 Envelope extraction

The envelope extraction removes data that is redundant to onset detection.

For ease of implementation, it employs two single-pole IIR filters. One filter is

set to a cut-off frequency of 90Hz, and the other to 150Hz. Equations 3.1 and

3.2 are used to calculate the IIR filter coefficients. Equations 3.3 and 3.4

perform the filtering and rectification:

Rf = cos
2πf

fS
(3.1)

kf = (2− Rf )−
ñ
(Rf − 1)(Rf − 3) (3.2)

y(T ) = k90 y(T − 1) + (1 − k90) |x(T )| (3.3)

e(T ) = k150 e(T − 1) + (1 − k150) y(T ) (3.4)

fS is the sampling frequency of the system (equal to 44.1kHz in this system); kf

is the operating constant for a single-pole IIR filter of cut-off frequency f, and

Rf is used in the calculation of this constant. x(T) is a band-pass filtered audio

signal; y(T) passes audio between the two IIR filters; e(T) is the output

amplitude envelope. T is a discrete time variable, so that (T ­ 1) refers to the

sampling interval that precedes T.

The two IIR filters remove the higher frequencies that convey fine signal

detail, as this is not useful for onset detection. Filtering also limits the

waveform’s rise time. The filter constants themselves were chosen

conservatively. They respond quickly compared with the mechanism

responsible for integrating loudness in the human hearing system, which (to a

simple approximation) can be attributed an integration time of around 80ms

[Scharf 1978]. They are also steep enough to attenuate the rectified 1kHz

component of an input signal by almost 40dB whilst preserving the signal

envelope. Consequently, e(T) may be decimated simply by removing samples. 
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When x(T) has a sampling frequency of 44.1kHz, e(T) is decimated by 1:18

to 2.45kHz. This decimation ratio is chosen to match the speed of the

localisation algorithm. The choice is governed by the use of convenient

multiples to increase the speed of the algorithm, and the minimum rate at

which the localisation algorithm must run in order to be effective. (These

considerations are covered in detail in Chapter 4.) As the discrete time variable

T refers to the original sampling frequency, the variable t will used to refer to

the new sampling frequency. The decimated e(T) is referred to as  e(t). 

3.4.3 Intermediate signals

Two signals are generated from the envelope signal e(t). The processes that

form these are flowcharted in Figure 3.3. One signal, referred to as a(t), is

calculated from the envelope signal’s rate of change. The other signal, r(t), is

calculated by dividing e(t) by a non-linearly filtered version of itself — termed

a follower signal. This signal ascends slowly and descends quickly. A declining

e(t) will thus be assigned a low or zero r(t), and an increasing e(t) will be

assigned a high r(t). The follower signal is limited so that its level cannot fall

below a fixed noise floor. Therefore noise from the recording microphones and

the environment, and rounding errors within the filter bank, cannot normally

influence the output. Thus r(t) pertains to the reliability of the input data.

r(t)

low-rate
envelope

×

onset probability

a(t)

e(t)

ar(t)
function

slow rise, fast
descent followerregression

12 samples (4.9ms)

linear

ratio
gradient:offset signal:follower

ratio

function
[0 1] mapping

function
[0 1] mapping

fixed
noise floor

Figure 3.3.  Generating the two intermediate signals.
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To generate a(t), a standard linear regression model is applied to twelve

surrounding values (4.9ms) of e(t), from e(t ­ 6) to e(t + 5). This provides an

equation describing the line of best fit as e(t) = mt + c . The formulae used to

calculate m and c in a twelve-point linear regression are presented in

equations 3.5 to 3.7:

ē =
12Ø
n=1

e(n)
®
12 (3.5)

m =

12Ø
n=1

ne(n)

143
−
6ē

11
(3.6)

c = ē− 6.5m (3.7)

where n is an integer between 1 and 12, representing a position in the array

e(t ­ 6 ... t + 5) .

Linear regression has become a familiar tool in onset detection, because it

emphasises increasing or decreasing trends in a signal at the expense of short-

term fluctuations. Linear regression is also used in the detection algorithms of

Martin [1995b] and Dixon [2001], but these algorithms are intended for signal

categorisation, so the sampling windows employed are an order of magnitude

greater than the 4.9ms used here. The alternative method of increasing

contrast between onsets and noise would be to employ another low-pass filter.

This would impose longer delays and would also flatten gradients.

In order to convert the e(t) = mt + c fit into a form that works for

exponentially increasing and decreasing signals, m is divided by the offset c to

produce the gradient-to-offset ratio. This value is invariant for a signal that

changes exponentially, and will not change if this signal is amplified or

attenuated. Klapuri’s onset detection process [Klapuri 1999] applies a similar

process to the extracted envelope, without using a regression model. Klapuri

points out that the operation of dividing intensity increase by absolute

intensity has a logarithmic equivalent:

∆I(t)

I(t)
≡
d

dt
log I(t) (3.8)

According to Klapuri, this operation detects onsets earlier than a linear

derivative would, and performs better with complicated signals. A
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cosinusoidal function is applied to map the output data to the [0 1] range:

a(t) =

¾̧¼¾º
0 : α(t) ≤ α0

− 12

‘
cos

π (α(t)−α°)
α±−α°

+ 1
’
: α0 < α(t) < α1

1 : α(t) ≥ α1

(3.9)

where α(t) is the gradient-to-offset ratio, and a
0
 and a

1
 are lower and upper

limits of the transition region. In this implementation, α
0 = 60/fs and

α
1 = 300/fs are chosen as a result of trial and error (see Section 5.3.1 for some

further consideration of this choice). The cosinusoidal function was chosen

because it appears that a transition curve with shallow slopes near the top and

bottom of its range would best suit the distribution of α(t) data. A cosinusoid

is the simplest function that possesses this property.

r(t) is generated by mapping a function, ρ(t), into the [0 1] domain. ρ(t) is

obtained by dividing the envelope signal e(t) by a follower signal, which will be

termed v(t). The equations used to derive v(t), and hence to calculate ρ(t), are

shown below:

zQ = 10−6/Q (3.10)

gT = 21000/Tfs (3.11)

v(t) =
¼̧º
g20 v(t− 1) : e(t) > v(t− 1)
v(t−1)+e(t)

2
: zQ < e(t) ≤ v(t− 1)

zQ : zQ ≥ e(t) ≤ v(t− 1)

(3.12)

ρ(t) = e(t)/v(t) (3.13)

The only absolute level threshold employed within the onset detector is the

fixed noise floor, zQ . This is calculated for each frequency band in inverse

proportion to its quality factor Q, so that a pink noise floor is assumed. The

constant g
20

 causes v(t) to increase at a rate of 6dB per 20ms. fs is 2.45kHz: the

sampling frequency of e(t).

When v(t) descends, it uses a moving-average filter which combines each

input sample with the last output sample in a 1:1 ratio. This produces a

descent rate of approximately 13dB/ms, and counteracts a problem that is

otherwise observed when the input signal approaches zero for one sample.

Subsequent recovery from such minima creates a series of false positive

results. The signal-to-follower ratio is mapped into the [0 1] range using a

power function:
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r(t) =

¾̧¼¾º
0 : ρ(t) ≤ ρ0‘

ρ(t)−ρ°
ρ±−ρ°

’1.8
: ρ0 < ρ(t) < ρ1

1 : ρ(t) ≥ ρ1

(3.14)

ρ(t) is the signal-to-follower ratio, and ρ
0
 and ρ

1
 are lower and upper limits of

the transition region. This implementation uses empirically-chosen values,

ρ
0 = 1.40 and ρ

1 = 2.25. It would now be useful to consider an example input

signal, and to generate the intermediate signals a(t) and r(t) from this. Figure

3.4 shows the envelope signals extracted from the right ear signal of a binaural

recording of a grand piano. This excerpt is a short section of a fugue, played in

a medium-sized recording studio with a reverberation time of 1.2s. The range

and nature of this excerpt is demonstrated by the score in Figure 3.5. The

piano was positioned 40 degrees right of, and 5 metres away from, a binaural

dummy recording head.

It may be noted in Figure 3.4 that some signal level is registered even in the

highest frequency bands — those bands which a piano barely excites. This

occurs because these plots are normalised, so the activity can be attributed to

low-amplitude leakage from out-of-band signals. The lowest three bands are

showing mostly noise. It is for this reason that r(t) employs the fixed noise

floor.
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a b
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Figure 3.4.  Extracted envelope signals for four notes of a piano fugue,

right ear. The waveforms have been filled to improve visibility. At the

beginning of the graph, the preceding note can be seen decaying. Point

a) indicates the attack of the second note of a chord: this separate attack

is inaudible unless the audio is slowed down. Point b) marks an area

where a note ‘swells’ suddenly across many lower frequency bands.

These are commonplace characteristics of piano waveforms.

Excerpt from ‘Fugue’ in

Tombeau de Couperin,

Maurice Ravel.

Figure 3.5. Extract from the score played in Figure 3.4, showing its pitch

range and number of notes. The brackets show the extent of the excerpt.

Eight notes are played. Because some of these notes sound

simultaneously, only four separate auditory events are heard.
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Figure 3.6 shows the a(t) and r(t) signals generated by the piano stimulus.

a(t) and r(t) both possess onset-enhancing properties. Generally, a(t)

produces a high-contrast signal with a fast response, but is upset by chaotic

signals. r(t) is more stable in this respect, but its value characteristically

remains high for much longer, and then falls relatively slowly. Presenting these

two signals in the [0 1] domain allows them to be manipulated and combined

easily with one another. All that is required to combine them is a fuzzy AND

operation, in which the two signals are multiplied together. The resulting

signal, ar(t), is shown in Figure 3.7.

time/ms500 10000

a(t)

r(t)

3
4
5
6
7
8
9

10
11
12
13
14
15
16

frequency band

3
4
5
6
7
8
9

10
11
12
13
14
15
16

time/ms500 10000

Figure 3.6. a(t) and r(t) for the right ear channel of the piano extract. All

signals are in the [0 1] domain. Only significant frequency bands are

shown. The different properties of the two signals can be seen clearly.
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ar(t)

m(t) : after thinning and holding logic

time/ms500 1000

Σ
1

24
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7
8
9
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11
12
13
14
15
16

frequency band

0

time/ms500 1000

Σ
1

24

8

10
11
12
13
14
15
16

0

3
4
5
6
7

9

Figure 3.7.  Recombination stages applied to the piano excerpt, before

[top] and after [bottom] thinning, holding, and cross-weighting logic. The

bottom set of graphs have been clipped to fit [0 1]. Sum signals appear

below each graph set. This figure shows the right ear signals.
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3.4.4 Frequency band recombination

ar(t) is generated for every frequency band of both binaural channels, so that

forty-eight ar(t) signals are produced in total. To combine these into a single

output, each ar(t) is processed to thin out closely-spaced groups of peaks, and

to extend its signal peaks. The thinning-and-holding operation is built by

combining hold-and-decay envelope generators. The formulae that control

these envelope generators are shown in the following equations:

sT = 0.11000/Tfs (3.15)

τ(0) = 0 (3.16a)

τ(t) = τ(t− 1) + 1 (3.16b)

H(h, d, t) =

Œ
1 : τ(t) ≤ hfs/1000

sd : τ(t) > hfs/1000
(3.17)

To generate a hold-and-decay envelope with hold time h and decay time d

milliseconds, a starting value is multiplied iteratively by each emerging value

of H(h,d,t). The decay time is the interval between the hold phase ending and

the envelope decaying to 10% of its initial value. Each hold-and-decay

generator also has a reset condition. Whenever this condition is satisfied, the

counting variable τ(t) will be reset to zero. The thinning and holding logic is

computed by three parallel hold-and-decay envelope generators:

cm(t) =

Œ
1.3ar(t) : ar(t) > cm(t− 1)

HM(10, 4, t) cm(t− 1) : ar(t) ≤ cm(t− 1)
(3.18)

cs(t) =

Œ
0.8ar(t) : ar(t) > cs(t− 1)

HS(50, 20, t) cs(t− 1) : ar(t) ≤ cs(t− 1)
(3.19)

l(t) =

Œ
1 : ar(t) > cm(t− 1)

HO(10, 4, t) l(t− 1) : ar(t) ≤ cm(t− 1)
(3.20)

HM(10, 4, t) reset : ar(t) > cs(t− 1) (3.21)

HS(50, 20, t) reset : ar(t) > cs(t− 1) (3.22)

HO(10, 4, t) reset : ar(t) > cm(t− 1) (3.23)

The input signal ar(t) is thus compared with two thresholds, cm and cs ,

which are controlled by two hold-and-decay envelope generators. Whenever
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ar(t) exceeds the larger threshold cm , an output spike is generated in l(t) using

the third envelope generator, and the two thresholds are recalculated.

Whenever ar(t) exceeds the secondary threshold cs , the envelope generators

HM and HS are reset, and cs is re-computed. HS(50,20,t), takes 70ms from

triggering to decaying to 10%, and this governs the speed of re-triggering. The

choice of this time constant is based upon the 50ms release time for

continuous stimuli in the precedence effect (see Section 2.1), and the need to

prevent re-triggering for at least 100ms after a detected auditory event (see

Section 3.2).

Significant onsets will generate activity across several frequency bands.

Less important fluctuations, for example those caused by the beating of one

room mode with another, are characterised by a narrow bandwidth, and will

activate only a small number of frequency bands. Therefore a cross-weighting

process is applied to l(t) that takes into account the values of neighbouring

frequency bands. This procedure is best described by a general formula. Let

lj(t) refer to the function l(t) that corresponds to the jth frequency band. l
j­1
(t)

thus refers to the function l(t) of the lower neighbouring frequency band, and

l
j+1
(t) to the higher neighbouring frequency band. The output of the cross-

multiplication network, mj(t), is given by:

mj(t) = 0.3 lj(t)

+ 0.6
�
lj−1(t)lj(t) + lj(t)lj+1(t)

�
+ 0.9

�
lj−1(t)lj+1(t)

� (3.24)

This is a weighted sum with a theoretical maximum of 2.4. Although m(t) is

thus capable of exceeding [0 1], for practical signals this rarely happens. When

it does, the signal can be clipped without sacrificing useful information. Zeros

are substituted for l
0
(t) and l

25
(t). The effect of this processing stage, and of the

thinning and holding logic, can be seen in Figure 3.7.

3.4.5 Output conditioning

Having tried a number of ways of geometrically combining the left- and right-

ear signals, the following root-sum-square strategy was found to be a good

compromise between high contrast and monaural sensitivity:

Σ(t) =
24Ø
j=1

ñ
m2L j(t) +m

2
Rj(t) (3.25)
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where mLj(t) and mRj(t) are the left and right ear mj(t) signals, and Σ(t) is the

sum signal. Σ(t) is shown in Figure 3.8.

time/ms500 10000

Σ

Σ

Σ

m  (t)

m  (t)

(t)

L

R

Figure 3.8.  Sum of left and right ear m(t) signals for the piano excerpt,

and the root-sum-square resultant, Σ(t). These traces have been scaled

individually, and therefore are not mutually to scale. The large transient

at zero time that occurs in previous figures has been removed for clarity.

 

It is now necessary to convert the fluctuating function into a binary one.

There are at least two established ways of performing this task. The fuzzy logic

approach involves filtering values according to a fixed threshold. Any function

value that exceeds this threshold generates a positive output; otherwise, the

output is zero. This approach is used in Klapuri’s onset detector [Klapuri

1999], where information on sound intensity before and after onset candidates

is available. However, this approach is not compatible with streaming signals

for two reasons. Firstly, Σ(t) does not just spike at an onset: it takes time to rise

and decay. Therefore a threshold detector has to remove the stream of

contiguous positive outputs that the function generates. Σ(t) also reflects the

presence of some small fluctuations that would mislead the spatial analyser if

they were detected as onsets. Setting an absolute threshold regardless of the

nature and content of Σ(t) would cause the binary decision maker to miss

onsets in some signals and to detect onsets falsely in others.

The methods of Smith [2001] and Marolt et al. [2002] use integrate-and-fire

neurons to generate the binary output. The activity of an integrate-and-fire

neuron is governed by the following formula (adapted from [Marolt et al.

2002]:

dO

dt
= I − γO (3.26)

in which O is the output activity of the neuron, and I is the input to it. Thus γ
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symbolises the ‘leakiness’ of the running integration process. When O exceeds

a certain threshold, the neuron fires, O is reset to zero, and a period of either

total or relative insensitivity to the input follows, depending on the

sophistication of the model.

The operation of a leaky running integrator is comparable to a band-pass

filter, since an integrator is a low-pass filter, and leakiness constitutes low-

frequency attenuation. Decision tasks in some onset detectors explicitly use

band-pass filters: for example, they are included in an early model by Smith

[1994] and also an algorithm by Schwartz et al. [1999]. They appear just as

frequently in a more implicit form: as an envelope extraction (low-pass filter)

procedure followed by delay-programmed inhibition, for example in Mellinger

[1991] and Palomäki et al. [2004].

Schwartz et al. [1999] use adaptive filters which converge to band-pass

filters. In the method used within this project, the band-pass and refractory

properties of integrate-and-fire neurons have inspired an alternative method,

where Σ(t) is compared continually with the sum of two thresholds: a fixed

threshold, hf, and a variable threshold, hv(t):

o(t) =

Œ
1 : Σ(t) ≥ hf + hv(t)

0 : Σ(t) < hf + hv(t)
(3.27)

A value of o(t) = 1 signifies an onset. hf = 3.0 for all examples in this thesis.

Levels of this magnitude appear frequently in most musical signals, but the

level is set high enough to prevent triggering by most chaotic signal

components. The variable threshold is altered depending on preceding values

of o(t) , Σ(t) , hv(t), and a hold-and-decay function (as described by Equation

3.17), H(25,30,t):

hv(t) =
¼̧º

4Σ(t− 1) : o(t− 1) = 1

s15hv(t − 1) + (1 − s15)Σ(t− 1) : o(t− 1) = 0, Σ(t − 1) ≥ hv(t− 1)

H(25, 30, t − 1)hv(t− 1) : Σ(t− 1) < hv(t − 1)
(3.28)

H(25, 30, t) reset : Σ(t − 1) > hv(t − 1) (3.29)

s
15

 is defined in Equation 3.15. It is used here to form an IIR filter that

interpolates between the variable threshold hv(t) and the input Σ(t), with an

integration time of 15ms.

The piano excerpt is passed through this final stage of the onset detection

process in Figure 3.9. Two onset spikes are generated during the first 10ms of

the excerpt. The remaining four are spaced approximately 350ms apart, and

An Onset-Guided Spatial Analyser for Binaural Audio



3  Onset Detection Algorithm          51       

coincide with the beginnings of each group of notes.

0 500 1000 time /

vh  (t) + h  (t)f

o(t)

reset

Σ(t)

ms

Figure 3.9.  Performance of the binary decision maker, showing the

temporal locations of the six detected onsets. Two onsets occur at the

beginning of the excerpt, and four more mark the beginnings of each of

the four groups of notes. Also shown are the ‘reset’ signal — this is

positive whenever the hold-and-decay is restarted — and the sum of the

fixed and moving thresholds.

3.5 Summary

This chapter has described an onset detector designed to work with the spatial

analyser. The special requirements of this detector are that it must process

streamed data, and that it must be broadly compatible with the spatial

analysis task. Onsets must be detected substantially more than 100ms apart in

typical reverberant music and speech material, preferably at instants in the

binaural signal where a human listener would consciously recognise onsets.

Each onset must also be detected very quickly, while the sound pressure level

at the ears is still rising sharply. Many models of onset detection already exist,

but none are closely compatible with the spatial processing task. This has

required a novel approach to be taken to onset detection.

The onset detection algorithm combines a number of techniques from

existing detectors to provide a simple algorithm that is both sensitive to

genuine onsets, and robust to false triggering from chaotic signals and strong

early reflections. Techniques applied in this algorithm include simple

envelope extraction that preserves the linear scale of the input data, and the

use of linear regression to find general signal trends without resorting to low-

pass filters. Filtering the signal further would introduce delays through phase
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shifting. Band-pass filters are used throughout, usually implicitly by

comparing low-pass filtered signals with other, more heavily-filtered signals.

Band-pass onset detection techniques are found explicitly in the onset

detectors of Smith [1994] and Schwartz et al. [1999]. Band-pass filters are also

comparable to the integrate-and-fire neuron approaches favoured in more

recent papers by Smith [2001] and Marolt et al. [2002]. The functionality of the

low-level precedence effect is implemented in this algorithm within the

thinning-and-holding process and the binary decision mechanism. For several

milliseconds after the onset detector fires, re-triggering is suppressed.

Of the many techniques employed in the development of this algorithm,

most are inspired by fuzzy logic rather than neurophysical theory. Since there

is little information about the way in the brain detects auditory onsets, the

approach has been almost entirely data-driven.

The onset detector is tested in Chapter 5 as a part of the localisation

system. A large proportion of the constants used within this project have been

refined by a process of trial and error — it will be shown that the algorithm

generally performs well, but some of these constants may not be optimal.

Specifically, the fixed values chosen for the binary decision maker are not

suited to slowly-changing signals. Fortunately, it has been demonstrated that

only these values, rather than the algorithm itself, need to be changed to fix

this problem. Specific conclusions about the performance of the onset

detector will be drawn from the experiments in Chapter 5.
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4 LOCALISATION ALGORITHM

This chapter describes the localisation algorithm that converts the binaural

stream into a running map of lateral angle against time. This conversion is

achieved by extracting interaural time and intensity differences (ITDs and

IIDs) from the binaural stream, and comparing these differences with a

number of look-up tables constructed from psychoacoustic data. An overview

of this process is shown in Figure 4.1.

ear
signals

filter bank

source location data

find ITD find IID

IID
sample window

ITD
sample window

convert IID
to histogram

convert ITD
to histogram

duplex theory
weighting

calculate
loudness

ITD look-up tables IID look-up tables

weighting
loudness

rectification /
low-pass filtering

Figure 4.1.  Overview of the localisation algorithm.

This flowchart shows the analytical algorithm. This chapter also describes

another two algorithms that are not used during run-time, but are essential to

the operation of the analytical algorithm. These are the generative algorithms

which create the ITD and IID look-up tables.
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There are a few similarities between the generative and analytical

algorithms, and these will be explained as they are encountered. The two

classes of algorithms will otherwise be described separately, starting with a

review of existing analytical algorithms for extracting and decoding ITD and

IID, and a detailed description of those procedures chosen for this project.

Explaining the analytical algorithm before the generative algorithms allows the

purpose of the look-up tables to be understood completely, so that the reasons

behind the complexity of the generative algorithms are clear. A number of

techniques will be described that are used to speed up the analysis of the

binaural data.

Before any description is attempted, a polar co-ordinate system will need

to be introduced to allow unambiguous representation of the auditory space.

It is also important to discuss some of the limitations of binaural data, as these

shortcomings are responsible for some of the decisions that have been made

in the design of the algorithm.

4.1 Introducing the co-ordinate system

Two polar co-ordinate systems are used in this thesis. They are both expressed

in terms of an angle on the horizontal plane. The second polar dimension, that

of elevation, is not used in this project, because elevated sources are not

considered explicitly. All possible sources are generalised to the diffuse-field,

unelevated condition.

The most common system used in this thesis describes the lateral angle at

which a source is positioned or localised. It is shown in Figure 4.2a. The

second co-ordinate system, shown in Figure 4.2b, is used to describe

monaural recordings. In both conventions, zero degrees refers to the situation

in which the source is placed in the direction that the recording head or

listener is facing.

In the first convention, +90° refers to 90° right of the listener, and −90°

refers to 90° left. In the second [monaural] convention, 90° refers to the

situation in which the ear is oriented towards the source, and 270° refers to the

situation where it is facing away.

A polarity sign is always prepended to angles in the first convention, with

the exception of 0° and 180°. No sign needs to be prepended in the monaural

convention. In this project, samples are taken on the lateral angle domain

around the head. This is always performed using a sampling interval of one

degree.
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180°

+90°−90°
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90°

180°

270°

a) b)

ear under
consideration

Figure 4.2.

a) The co-ordinate system that describes sound source placement and

localisation.

b) The co-ordinate system that describes monaural recordings and

situations. In the monaural convention, 90° is always oriented towards

the ear under consideration, whether it is the left or the right ear.

4.2 The use of binaural data

It would be ideal to produce a algorithm that performs three-dimensional

localisation as effectively as a human listener. Unfortunately, there are

shortcomings in the binaural format that complicate this task, and additional

compromises that must be made when generalising the localisation algorithm

to work with any binaural recording.

A major problem is the cone of confusion phenomenon [Blauert 1997: 179].

A ‘cone of confusion’ is a locus on which the difference between the distances

to the ears does not change. This locus approximates the surface of a baseless

cone whose apex falls between the two ears on the interaural axis. At every

point on this cone, interaural time differences are identical. Discrimination

between locations that lie on the same cone of confusion using only interaural

time differences is therefore impossible.

Beyond a few metres’ distance, inverse-pressure law effects cease to exert

much influence on interaural intensity differences. If it is assumed that the

head is approximately spherical, the cone of confusion will also hold for IIDs

at distance.
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If a more sophisticated model is applied, in which the head is non-

spherical and pinna and torso reflections are taken into account, the

relationship between ITD, IID, and listening position becomes more

complicated. At low frequencies, the spherical model is a good approximation,

because the listener’s head has no detail that is significant at a wavelength

scale. At high frequencies, though, reflections from the listener’s head, pinnae

and torso create spectral notches and peaks. These nonuniformities add extra

IID cues that can help to pinpoint a single direction on the cone of confusion.

General trends can be spotted in the angular variation of IID cues among a

group of listeners. Many of the irregularities are caused, for example, by head

shadowing and concha resonances that tend not to vary widely from listener

to listener. However, there are a number of peaks and notches in the

frequency spectrum whose characteristics can vary substantially between

listeners [Møller et al. 1995]. Considerable variation is also encountered in

standardised dummy recording heads [Møller et al. 1999]. An example of this

variation is the standing wave created in the ear canal. The ear’s response to

frequency components above approximately 3kHz is greatly influenced by

very small interpersonal variations in the structure of the eardrum and ear

canal (for example, [Stinson 1990]). Some of the differences are substantial

enough to impair localisation performance significantly when a listener hears

a recording made using another listener’s ears. Localisation precision is

further impaired if a listener is asked to locate sources in a recording made

with an artificial head [Minnaar et al. 2001].

To transcend the cone of confusion, one of two things must be done. The

simplest solution is to generalise the ITD and IID look-up tables to a particular

model of dummy head, and accept that there will be errors when using

binaural signals recorded using other models of head. Alternatively, a learning

algorithm can be incorporated so that the model trains itself as it listens. This

approach has been investigated for some years by Karjalainen and his research

group, for example [Palomäki et al. 1999]. Both techniques involve making

assumptions about the source stimulus, so they will work only with familiar

listening material. The first technique is the simplest, but is prone to errors if

data from a non-specific recording head is used. The second approach would

be the most psychologically accurate because human listeners must adapt

their own head-related cues as they grow, and subjects have demonstrated

variously that they can re-train easily to artificial head data [Minnaar et al.

2001]. It would, however, require a considerable library of example data to re-
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map the look-up tables with precision.

Even if difficulty prohibits venturing as far as full three-dimensional

location, it might still be possible to process head-related impulse responses

to enable 360° localisation in two Cartesian dimensions. There are a number of

algorithms that attempt this with some success, albeit under anechoic

conditions. For example, some results from an algorithm by Kunz and Bodden

presented by Bodden [1998], and a set of results from Backman and

Karjalainen [1993], both describe successful planar 360° localisation under

anechoic conditions. However, there is no evidence of either system being

fully evaluated, and their implementation details cannot be found.

The use of an ITD and IID database from one head, and analysis material

from another, is tested and supported by the experimental research of Begault

et al. [Begault et al. 2001]. Their listening experiment suggests that the

localisation errors involved when non-individualised data is used are small, as

long as front-back confusions are not counted as localisation errors. However,

the localisation accuracy of their nine listening subjects falls considerably if

front-back confusions are considered as localisation errors. Specifically, when

the binaural simulation is non-interactive, the reliability of localisation

judgements falls below 50%. One can then assume that the listeners are

guessing the hemisphere in which the source is placed.

It can be concluded that human listeners make frequent front-back reversal

errors when listening to binaural recordings. This finding is corroborated by

the listening experiments of Møller et al. [1996] and Horbach et al. [1999], both

of which also demonstrate that as long as interaction with the sound field is

not permitted, front-back reversals are hardly less frequent whether a sphere,

a dummy head, or another listener’s ears are being used to supply ITD and IID

cues. Both noted improvements in front-back localisation when the listener’s

own ears were used; however, these improvements were small. The greatest

improvement in front-back discrimination accuracy in all cases occurred

when a head-tracked simulation was used in place of the static binaural

recording.

No convincing data exists to demonstrate that a computerised binaural

analyser can localise sources any better than a human listener, without having

access to additional cues. Therefore, to avoid cone-of-confusion-based

complications, no attempt is made in this project to transcend the cone of

confusion. This means that the database obtained from the KEMAR dummy

head data set [Gardner and Martin 1994] is universally applicable, as long as a
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small amount of error can be tolerated. The recordings for analysis were made

using a Cortex Instruments MK2 dummy head. A comparison of the

dimensions of Cortex and KEMAR heads, shown in Figure 4.3, shows that they

are almost identical. This is further evidence that ITD and IID discrepancies

owing to head-shadowing and ear spacing should be very similar.

Head breadth 152

Dimension KEMAR IEC 959

Head length

Head height

Bitragion diameter

Tragion to shoulder

Neck diameter

Shoulder breadth

Chest breadth

Chin-vertex length

Tragion to wall

188

125

143

175

112

282

440

224

96.5

113

191

97

head
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chest
breadth

shoulder breadth

neck
dia.

bitragion
dia.

head
length

tragion
to wall

tragion to
shoulder

chin-vertex
length

Figure 4.3.  Dimensions of the KEMAR head, and IEC 959 parameters, to

which the Cortex Instruments MK2 head is designed. All measurements

are in millimetres.

KEMAR parameters are taken from Burkhard and Sachs [1975]; IEC 959

parameters from Wojcik and Cardinal [1999].
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Localisation in this project is achieved by specifying a source position as a

lateral angle in the horizontal plane. Thus a source placed at +110° will be

localised successfully at +70°, and while source location angles less than −90°

and greater than +90° are valid in nature, they will not be considered by the

algorithm. Elevated sources will be localised at the unelevated point on their

cones of confusion. To extend this project and investigate the performance of

the localisation algorithm under flat 360° conditions would form an interesting

subject for further work.

4.3 The analytical algorithm

This section describes the processes behind the flowchart shown in Figure 4.1,

at the beginning of this chapter. As there are many accepted ways of extracting

ITD and IID information, and also many ways to make sense of them, the

elaboration of each part of the algorithm will be interplayed with a review of

relevant literature.

The output of the analytical algorithm is arranged, in common with many

other existing localisation algorithms, three-dimensionally, as a map of truth

values versus lateral angle and time. ‘Truth value’ is a fuzzy logic term,

referring to a value in the [0 1] range that represents the degree of membership

of a set. Hence, in this case, every truth value represents the degree to which a

corresponding lateral angle belongs to the set of possible angles of incidence.

4.3.1 Filter bank, rectification, and low-pass filtering

The Slaney filter bank, full-wave rectification and low-pass filtering are the

first three processes of the analytical algorithm, as shown in Figure 4.5. These

processes, described in Section 3.4.1, approximate the action of the cochlea by

converting the two pressure waves of the binaural input into a representation

of neural activity in the inner ear. Full-wave rectification is favoured over half-

wave rectification because this enables timing and intensity information to be

extracted from both positive- and negative-going portions of the input signals.

4.3.2 Interaural intensity differences

Owing to the problems associated with extracting IIDs, binaural localisation

algorithms that are not designed to simulate human listening often ignore

them altogether, concentrating on ITD-based localisation. However, IIDs are

an important cue for human listeners, significantly more salient at high
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frequencies than ITDs [Macpherson and Middlebrooks 2002]. They must

therefore be taken into account in the localisation algorithm.

When a listener hears a natural sound source, the IID cues will be caused

by three phenomena:

• At very close distances, an interaural intensity difference occurs

because of the different distances that a signal must travel to either

ear. For sources that obey the inverse pressure law, the maximum

level disparity generated by this mechanism is approximately 1dB at

three metres’ distance. This mechanism is not frequency-dependent.

• As wavelength decreases, the listener’s head becomes more of an

obstacle to the sound waves. Reflections from the head cause the

sound pressure level to be raised at the nearer ear, and lowered at the

farther ear. This head shadowing effect increases monotonically with

frequency. It is greatest when the sound is coming from 90° left or

right.

• At short wavelengths, the outer ear, and particularly the folds of the

concha, creates reflections that effectively comb-filter the incoming

signal. This causes a characteristic pattern of peaks and notches in

the ear’s frequency response. The pattern is heavily dependent on

source location, and is termed a head-related transfer function

(HRTF). Shoulder and torso reflections also contribute weak but

perceptible changes in the HRTF.

IIDs may also be complicated by room reflections, as signals arriving from

many angles around the head simultaneously can confound the IID cues

provided by the unreflected signal path.

IID caused by distance-related attenuation is the easiest and most uniform

cue to decode, but the information it conveys about distance and source angle

is highly ambiguous, and its influence is confined to small source distances.

Furthermore, as distance-related attenuation interacts with head shadowing

and HRTF peaks and notches, the pattern of IIDs immediately around the

listener’s head becomes very complicated. This is shown in Figure 4.4. It is

very difficult to localise narrow-band stimuli at close distances reliably using

only IIDs.

An Onset-Guided Spatial Analyser for Binaural Audio



4  Localisation Algorithm          61       

0.5

+90–90

180

an
g

le
 /

 d
eg

re
es

distance / metres
1

+5

+4
+3

+2

+1

1

0.5

+90–90

180

an
g

le
 /

 d
eg

re
es

distance / metres

+12
+9

+12

+9

+6

+6

+3

+15

1

0.5

+90–90

180

an
g

le
 /

 d
eg

re
es

distance / metres

+5
+1

0

+15

+20

+25

+20

+15

8.6kHz

1kHz

150Hz

Figure 4.4.  Equal-IID contours for distances between 20cm and 1m from

the centre of a listener, computed using KEMAR HRTF data and physical

measurements [Gardner and Martin 1994; Burkhard and Sachs 1975].

Spectral cues created by pinna and torso reflections convey a wealth of

information, since they change quickly with head angle and source elevation.

However, for a number of reasons, it is difficult to extract spectral cues

reliably. HRTFs vary widely between individuals, and even between dummy

heads of standard dimensions from different manufacturers [Møller et al.

1999]. Although certain spectral characteristics are known to concur with

certain source directions, the frequency and extent of these characteristics

vary between listeners.

Just as humans learn to localise using their own HRTFs, it is possible for

artificial listeners to use spectral cues. This is achieved by splitting the signal

into frequency bands, analysing the IIDs in each band, and combining the

results. Some recent algorithms perform this task using neural networks

[Nandy and Ben-Arie 2001; Palomäki et al. 1999]. However, both human and
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machine listeners exhibit one particular problem when attempting to locate

an unfamiliar sound without the freedom of movement: it may be impossible

to tell whether the spectral characteristics that are heard are an innate

characteristic of the source, or whether they have they been caused by pinna

filtering. This is particularly true near the centre line of the head, where the left

and right ear cues are similar.

At low frequencies and distances of a few metres, the interaural intensity

difference is a simple function from which the source angle can be

approximated mathematically. At higher frequencies, where spectral features

are manifested, the IID-to-angle mapping ceases to be one-to-one. Thus, the

intensity difference information from a small number of frequency bands may

indicate a large locus of probable sound locations, rather than a single point in

space. The location may have to be derived by obtaining a consensus between

several active frequency bands, and by using interaural time difference cues.

Extracting interaural intensity difference information

Figure 4.5 is an expansion of part of Figure 4.1. It presents a general method

for extracting interaural intensity differences. The procedure works by

integrating signal energy over a short time period in each binaural channel,

and comparing the results. This approach is implicit in all existing designs.
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Figure 4.5.  A general method for extracting interaural intensity

differences.

Unless the signal under analysis is only a few milliseconds long, or the

complete signal is available and its interaural cues are fairly static, it must be

divided into many smaller parts using a windowing algorithm. Analysing these

parts separately will produce a moving representation of IID against time. 

In existing designs, the windowing algorithm usually takes one of two

forms: either a continuous leaky integration of new information (referred to as

a level meter model by Hartmann and Constan [2002]), or a slicing algorithm

that takes a rectangular window of samples around a certain time. The
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extracted IID sometimes depends greatly on the windowing or filtering

algorithm used to calculate it. This can be seen in the two periodic waveforms

analysed in Figure 4.6.
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Figure 4.6.  A comparison of IID calculations for two stimuli, using three

different implementations of the level-meter model. Approximately 85ms

of each method is shown. The left and right channels are of equal level.

Ideally, the channel difference ÷ sum would be a constant value of zero.

a)  Standard level-meter model. Output is second-order Butterworth

filtered, f0 = 800Hz.

b) Square-windowed average of 14 samples (950µs);

c)  As above, with time-alignment correction.

Scheme c) is used in this project.
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IID-to-angle conversion can be performed in one of two ways. The first

strategy centres around a data array that represents physical space. This is

pre-loaded with a look-up table of IID data, and might contain many hundreds

of datum points. The second approach is to feed all available ITD, IID, and

loudness data into a trained neural network, from which will emerge one or

two values representing source angle.

When direct-arriving sound energy dominates, and the IIDs and ITDs from

all active bands can be considered, the table of probable source angles usually

resolves to a few closely-clustered candidates.

A review of existing IID extraction algorithms

There is no standard implementation of a technique for extracting IID by

energy integration, so practices differ from researcher to researcher.

Macpherson [1991] calculates ‘interaural amplitude difference’ as the ratio of

energy (the sum of the squared signal) in the left and right channels of each

critical band. The signal is split into 2.5ms windows, and the interaural

amplitude difference is expressed in decibels. Frequency bands are combined

using a weighted mean, with bands given more weight if they contain more

energy. This weighting prevents random results caused by background noise,

which can dominate in quiet bands.

Martin [1995b] uses a very similar technique over the same window

interval, where signals from incoming bands are squared, then smoothed with

a low-pass filter whose frequency is the same as the centre frequency of the

incoming band up to 800Hz, and limited to 800Hz thereafter. The rest of the

technique is identical to Macpherson’s, and the output value is also expressed

in decibels.

The choice of 2.5ms as a window length in both papers is possibly a

coincidence, although psychoacoustic and computational criteria dictate a

value of this order. According to Hartmann [1997: 198], interaural differences

become less salient around 1–1.5ms after onset. To accommodate such small

time differences, an IID sampling window of 2.5ms is about the longest

allowable — in fact, a sampling resolution twice as fine would be preferable.

The demands on a microprocessor of calculating IID are fairly independent of

IID sampling frequency in this range, so the practical limit of IID sampling

frequency is dictated only by the sampling frequency of the input data, and

the way in which IID data is handled subsequently.

Martin suggests that noise should be introduced artificially into the IID
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results in order that the model can ‘meaningfully be compared with human

psychoacoustic data’ [Martin 1995b: 2–3]. The purpose of this noise may be

twofold: it would increase localisation blur as the sound pressure level

decreases (this phenomenon is observed in human listeners: see Blauert [1997:

155]) and the addition of internal error would also randomise responses and

reduce the certainty of results.

To derive ILD, Palomäki et al. [2004] employ a frequency-dependent

mapping function, derived from experimental data, to obtain an

instantaneous lateral source angle estimate from the ILD of each critical band.

This ILD is the energy ratio of the squared envelopes of the left and right ear

signals. These envelopes are obtained using a time constant of 15ms. ILD data

is then compared with ITD data in order to determine whether the data from

the two cues are consistent, and therefore whether a wanted signal or a

distracting signal is dominating the sound field at each instant.

When IID is expressed in decibels, it has a theoretically limitless range. This

is not important when IIDs are resolved to source angles using look-up tables,

as very large outer values of IID can be clipped to fit the tables. However, it

would not be possible to introduce data with a large or limitless range into a

neural network-based localiser, as the training mechanism of a neural network

is based on the back-propagation of error values. Thus neural network models

tend to be engineered to accept values in the range [−1, 1] [Gurney 1997].

In order to produce a value in this range with a minimum of computation,

the level meter model of Hartman and Constan [2002] adapts the ‘judgment

function’ exploited by Sayers and Cherry [1957: 982] in their experimental

paper. This is produced by dividing the difference of left and right intensity

values by their sum. This normalised ratio, which always falls within [−1, 1], is

also employed by Backman and Karjalainen [1993], and modified in

Karjalainen [1996] to derive IID data directly from the firing rates of two

neuron models.

4.3.3 Interaural time differences

There are several current ITD-extracting algorithms. These can be divided

broadly into two types: one group is designed principally for efficient

computer implementation, and the other aims to model neurophysical

activity. A little insight into both types of algorithm will be required to

understand the problems of this project. Because each new model tends to

incorporate a specific advance, it is easiest to tackle them in historical order.

An Onset-Guided Spatial Analyser for Binaural Audio



4  Localisation Algorithm          67       

The Jeffress model

Any sound which contains some amount of low-frequency content, arriving

simultaneously at both ears, will be converted into coincident neural

impulses. This happens because inner hair cells within both cochleas fire

impulses at the same phase in every cycle [Yates 1995]. A coincidence-

counting neuron that receives both impulses simultaneously will register a

high number of coincidences in this case. Fewer coincidences will be

registered by this neuron if the same sound is delayed in one ear. However, if

another coincidence-counting neuron is placed in such a way that there is a

counteracting propagation delay along the nerve fibres, it will register a high

number of coincidences. A suitably large array of coincidence-counting

neurons arranged in this way produces a neurophysically viable method of

finding interaural time difference: the most active coincidence counter

indicates the ITD.

This model, illustrated in Figure 4.7, was first proposed by Lloyd Jeffress

[Jeffress 1948]. The neurological scheme that this employs, in which two

signals are compared repeatedly as one is successively delayed with respect to

the other, is now known as a labelled line [Schnupp 2001: 677]. Sayers and

Cherry [1957: 980–1] expressed this model mathematically, and it now forms

the basis of the running interaural cross-correlation (IACC) algorithm. A

flowchart of this diagram is shown in Figure 4.8. The algorithm is simple to

implement, produces precise results, and has therefore obtained widespread

popularity.
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Figure 4.7.  The Jeffress model (after [Jeffress 1948]). Coincidence-
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Figure 4.8.  Computational version of the Jeffress model, after Lindemann

[1986].
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The correlogram

The interaural cross-correlation (IACC) of a binaural signal is usually

computed separately for every frequency band, so time differences can be

weighted differently against intensity differences across the frequency

spectrum. IACC data is therefore four-dimensional: cross-correlation versus

time-lag is computed for each frequency band, and this happens for every

audio sample.

The piecewise product of the left- and right-ear signals of each frequency

bands, normalised to compensate for input level, can be plotted against

mutual time-lag to form a graph called a correlogram [Lyon 1983]. The symbol

τ conventionally represents the time-lag axis, and serves this purpose in the

standard cross-correlation formula [BS EN ISO 3382:2000].

A correlogram is a useful analytical tool, and is used commonly in auditory

localisation research. It provides an indication both of the amount of

coincidence between the two ear signals, and the interaural time delay for

which this coincidence is maximal.

The purpose of level normalisation in a correlogram is to produce a

measurement of signal correlation that is independent of input level. Perfectly

correlated signals will produce a peak value of 1 on the correlogram, and this is

their interaural cross-correlation. Uncorrelated signals will have a peak IACC

close to zero, irrespective of the absolute input level. The standard cross-

correlation algorithm [BS EN ISO 3382:2000] takes the root-product-square of

the two signals as a denominator to normalise the correlogram:

IACFT±T² (τ) =

Ò T²
T±
pl(t)pr(t+ τ)dtñÒ T²
T±
p2l dt

Ò T²
T±
p2rdt

(4.1)

IACFTT(τ) represents the interaural cross-correlation function in the time

interval T1 to T2. pl(t) and pr(t) are the sound pressures at the left and right ears

against time.

Many algorithms do not apply this normalisation, because the

denominator is not quick to calculate. In general, if a normalised correlogram

is required, it is far faster to approximate the denominator by taking the sum

of running level meters from each ear.

Many cross-correlation ITD extractors, among them the models of Stern

and Colburn [1978] and Macpherson [1991], disregard the actual

measurement of coincidence: they are concerned only with the interaural time
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delay for which coincidence is maximal. This is determined either using the

peak or the centroid of a correlogram. Under these circumstances,

computational efficiency can be improved by discarding normalisation

entirely. However, some recent localisation algorithms require the normalised

IACF as a separate cue. In addition to its use as an architectural acoustics

parameter (see Section 2.2), the interaural cross-correlation function has been

used to detect auditory onsets by Faller and Merimaa [2004], and as a cue for

separating speech sources from distractors by Palomäki et al. [2004].

The running interaural cross-correlation of a binaural signal with a

sampling frequency of 44.1kHz, split into 24 bands, and calculated over a

time-lag range of ±1ms, generates a set of correlograms containing more than

40 million data points per second, all of which result from separate

multiplication operations. Multiplication is generally a slow operation, so

generating IACC data is most of the work of a localisation system. Reducing

the computational load of ITD calculation is a convenient way of speeding up

the algorithm. Unfortunately, the large number of multiplication operations

that a running IACC requires, and its high data throughput, makes the IACC

inherently slow. This has led to attempts to find other means of extracting

interaural time difference from binaural signals, and there are at least two

systems in which the IACC process has been modified to perform ITD and IID

extraction simultaneously.
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EC and Stereausis

For decades after the publication of the Jeffress model, its physical validity was

debated among researchers. Evidence for the neural auditory delays that the

model requires were found in barn owls, but doubt has always been expressed

about its validity in humans [Fitzgerald 2002: 13]. Durlach [Durlach 1963]

proposes a theoretical mathematical model that simulates the improvement in

masking level differences experienced in binaural listening over monaural

listening. In this model, sharper directivity is obtained by cancelling

distracting signals in the sound field. Durlach separates this model into two

processes. The first is equalisation, in which the distracting signals in the two

ears are transformed to be of similar phase and level. The second is

cancellation, in which the signals are subtracted, thus cancelling the

distracting information and increasing the signal-to-noise ratio of useful

signal components. He termed this hypothesis the EC model (’equalisation

and cancellation’).

Schroeder [Schroeder 1977] hypothesised that instead of being generated

neurally, the interaural phase shifts necessary for the EC model may be caused

acoustically, by exploiting the movement of waves along the basilar

membrane. An array of inhibition-type neurons would then perform the

necessary level equalisation and cancellation. A system that uses the inherent

delays in a simulated cochlea as the basis of a localisation model was

introduced and investigated in 1991 [Shamma et al. 1989], and given the name

stereausis.

In stereausis, each channel of the binaural signal is divided into more than

one hundred frequency bands, each of which somewhat overlaps its

neighbours. The different filters have different centre frequencies, and

bandpass filtering a signal imposes a small group delay that is dependent on

frequency. The higher a filter’s centre frequency, the shorter its impulse

response, and the shorter this delay. By piecewise multiplying the output

signals from different bands together, a number of different interaural delays

can be probed directly, without the need for the explicit delay lines of Jeffress’s

model.

The latency hypothesis

Jeffress suggested cautiously that his model could also account for sensitivity

to interaural intensity differences, if one supposes that inner hair cells
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transform a quieter signal into a later neural spike. This hypothesis, later

termed the latency hypothesis, was eventually refuted. Colburn and Durlach

[1978: 469] argue that at high frequencies, the phase-locking sensitivity of the

inner ear breaks down so the human auditory system is no longer sensitive to

the fine structure of a signal. However, it is very sensitive to interaural

intensity difference. Unfortunately, the latency hypothesis accounts only for

situations where the human auditory system is sensitive to both time and

intensity differences, or to time differences alone. It cannot cope with this

exception. The latency hypothesis also cannot explain the inability of a listener

to trade time and intensity differences completely, a phenomenon that was

first highlighted by Hafter and Carrier [1972]. Problems with the latency

hypothesis are covered in more detail by Stern and Trahiotis [1997: 506ff].

Lindemann and Gaik

Lindemann’s model [1986] extends the computational version of the Jeffress

model shown in Figure 4.8. Firstly, it includes two ‘monaural processors’.

These are simple mechanisms built into the ends of each delay line to improve

localisation results when large IIDs are present. The Lindemann model also

includes a system of actively-controlled losses along each delay line. Two

kinds of loss are imposed:

• Contralateral inhibition: the stronger the signal on one ear’s delay

line, the more strongly the opposite delay line is attenuated.

• Dynamic inhibition: the greater the output of the multiplier at

each tap, the more both delay lines are attenuated. Each of the

signals that control this attenuation is passed through a

specialised low-pass filter.

These are shown in Figure 4.9. Contralateral inhibition sharpens the peaks

of the correlogram, and also adds some sensitivity to IIDs. When a large signal

from one ear meets a smaller signal from the other, the small signal will be

attenuated severely by the presence of the large signal. The large signal will

not be attenuated as heavily, and will propagate further along the delay line.

This spreads the correlogram in favour of the greater signal level. Dynamic

inhibition, and the low-pass filters that control it, incorporates a simple model

of the precedence effect into the delay line.
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Figure 4.9.  One correlogram tap of Lindemann’s localisation model

[Lindemann 1986]. Contralateral and dynamic inhibition are illustrated

here, but the monaural processor is not.

Gaik’s implementation of the Jeffress model [Gaik 1993] extends

Lindemann’s work by distributing a further set of attenuators along each delay

line. These attenuators are weighted differently for every critical band, and

this optimises results for natural combinations of ITD and IID.

The delay-line attenuators that form part of the Gaik model would require

re-calculation whenever the length of the correlogram or the sampling

frequency of the incoming data is changed. Also, these revised models

produce a result that is not a correlogram in the strictest sense, because the

process is not identical to the numerator of the cross-correlation algorithm

shown in Equation 4.1. This means that the findings of an experiment

conducted with the Lindemann or Gaik models are not directly applicable to

those that use interaural cross-correlation.

Just as importantly, there is a growing body of research which indicates

that the ITD and IID cues are extracted in different parts of the brainstem

([Schroger 1996], [Pratt et al. 1997]), and that much of the subsequent

processing of these cues also takes place separately [Ungan et al. 2001]. Such

findings reject the neurophysical validity of an integrated strategy.
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EI neurophysical models

Very recent advances in neuroscience have made it possible to isolate

individual neurons and study their responses to auditory stimuli. Experiments

on anaesthetised cats have revealed coincidence-counting mechanisms that

differ substantially from the Jeffress model. The neurons within these

mechanisms do not respond symmetrically to stimulation. While impulses

from one ear increase their activity, impulses from the opposite ear decrease

it. Neurons that behave asymmetrically like this are called EI (excitatory-

inhibitory), and form the basis of many newer models of ITD detection,

including those by Breebaart et al. [2001], McAlpine et al. [2001], and Hancock

and Delgutte [2004]. Older paradigms that are based on Jeffress’s model are

now referred to as excitatory-excitatory, or EE, models [Breebaart et al. 2001].

In the EI paradigm, cells are tuned to fire maximally at a certain

characteristic interaural phase or delay, and this delay is of the order of

hundreds of microseconds [Fitzgerald 2002: 14]. It is the rate of neural firing,

and not the location of maximum activity along a labelled line, that

corresponds to the interaural time difference. The details of workings of recent

EI models are beyond the scope of this review.

EI models explain two related phenomena more satisfactorily than the EE

paradigm with which they conflict. The first is the ability of human listeners to

detect very small interaural differences: typical just-noticeable differences for

untrained listeners are of the order of 10–20µs [Blauert 1997: 41; Domnitz

1973]. The second is the sensitivity of a human listener to a range of ITDs that

can extend to two milliseconds [Hartmann 1997]. This apparent conflict was

difficult to resolve in the Jeffress model without resorting to a model

containing many hundreds of coincidence-counting neurons over each

frequency band. In EI models, the human auditory system’s sensitivity and

range can be explained using a smaller number of more specialised cells.

 The use of the EI model in localisation has one notable antecedent: an

inhibitory mechanism, referred to as ‘contralateral inhibition’, is built into the

delay lines of Lindemann’s cross-correlation model [Lindemann 1986].

However, this is used mainly to sharpen the correlogram and to assist the

imposition of interaural intensity sensitivity onto the model.
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4.3.4 IID and ITD detection algorithms used in this project

A conceptual model of the ITD detection algorithm used in this project, from

the rectified and smoothed critical band signals to the ITD output, can be seen

in Figure 4.10.

 

jeffress model

critical band
filtered and rectified

signal

correlogram

interpolation

fine correlogram

peak finder

itd

FIND ITD

ITD
SAMPLE
WINDOW

Figure 4.10.  Concept for extracting ITD, at the required resolution, from

one channel of a critical band filtered binaural signal.
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Although interaural cross-correlation is no longer regarded as

neurophysically valid, there are many reasons for choosing the Jeffress model

over the other methods for this spatial feature extractor.  The reasons for this

choice over the three valid alternatives — stereausis, the Lindemann-Gaik

approach, and EI — are based upon its simplicity, reliability, and speed.

In order for stereausis to work well, a very large amount of data needs to be

manipulated. The prototype model demonstrated by Shamma et al. [1989]

uses 128 critical band signals. To generate and manipulate this amount of data

efficiently would require an FFT-based algorithm. Thus, a frequency-domain

approach, rather than a time-domain approach, would have had to be taken in

the design of the rest of this project. This would be a considerable departure

from the majority of existing approaches. The possibilities of stereausis are

still too uncharted for this departure to have been safe. Furthermore, there are

no clear advantages, from a computational point of view, of the stereausis

technique over the optimised Jeffress cross-correlation model presented here.

The Lindemann-Gaik approach has been rejected for several reasons. By

combining ITD and IID sensing, the Jeffress model becomes far more

complicated, and one departs further from a neurophysical approach to

binaural localisation. In passing the trading of ITD and IID cues to a computer

algorithm, not only is flexibility sacrificed, but the extracted IID emerges

encoded on a time axis. Thus results from a Lindemann or Gaik model are

difficult to compare directly with an IID database, or IID-based

psychoacoustic research.

EI lateralisation methods are relatively new. When this research project

started, much of the information needed to build an EI style localisation

model was still unavailable or strongly contested, and the Jeffress model had

not yet been superseded by the new discoveries. To abandon a working IACC

model and replace it with a new-style model would have required more

advantages than neurophysical validity alone, and would require there to be

an established and agreed method of implementation. The different EI

localisation models are only now starting to concur to the extent that an

efficient computer algorithm, on which the majority of research agrees, can be

realised.

The Jeffress interaural cross-correlation technique has been used in

auditory processing for more than half a century, and its almost universal

adoption during this time has generated a wealth of research on methods for

interpreting and processing the IACC and correlogram to account for
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perceptual phenomena. If the IACC approach is preserved then this literature

remains directly applicable. 

Optimisation of the Jeffress model

The human auditory system is sensitive to changes in interaural time

difference of approximately 10 microseconds around 0° [Blauert 1997: 41;

Domnitz 1973]. Because each multiplying tap of the Jeffress model uses signals

that are delayed by one sample in one ear and advanced by one sample in the

other ear relative to its neighbours, the smallest interaural delay that the

model can detect is two samples. At 44.1kHz, this corresponds to ∆τ = 45.4

microseconds. To give the ITD detector at least the same resolution as the

human auditory system, one would need to interpolate either the input or

output of the Jeffress model by at least 5:1.

Of these two alternatives, it is more sensible to interpolate the output of the

Jeffress model, as this is more than twice as efficient as interpolating both

channels of the input and then processing the resulting data.

To convey the full range of ITDs of the human auditory system, each

correlogram would need to be computed with τ between ±1ms. This

corresponds to ±22 samples when ∆τ = 45.4 microseconds. Each correlogram

will therefore have 45 points.

A simple calculation shows that the data rate generated by this process is:

44100 Hz × 24 bands × 45 correlogram points × 5:1 interpolation factor

≈ 238 million points per second

(47.6 million of these are uninterpolated)

This amount of data can barely be calculated and manipulated in real time,

and most of it is redundant. Hence there are many ways in which the

computational load of the Jeffress model can be reduced in practice.

Choosing the sampling frequency

It is necessary to find the lowest data rate that the Jeffress model requires to

produce an undistorted correlogram, given a generalised input signal.

When two sinusoids with the same frequency and an arbitrary phase

relationship are multiplied together, the result will contain two components: a

sinusoid of twice that frequency and, as long as the signals are not in

quadrature, some DC. This is proved in Equation 4.2:
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sin(x+ δ) ≡ sinx cos δ + sin δ cos x ;

cos(x+ δ) ≡ cosx cos δ − sin x sin δ .

⇒ sinx cosx ≡ sin 2x
2
;

sin2 x ≡ 1−cos2x
2

.

⇒ sin(x+ δ) sinx ≡ sin2 x cos δ + sin δ sinx cosx

≡ sin δ
2
sin 2x+ cos δ

2
(1− cos 2x) .

(4.2)

Thus there is a factor of eight that relates the minimum sampling frequency

required for the Jeffress model to produce an unaliased output with the

maximum audio frequency of interest. This factor is produced by three

doublings:

×2 : Doubling of the maximum frequency when two audio signals are

multiplied together;

×2 : The halving of time resolution in the Jeffress model, because each

successive tap receives an increasingly delayed signal from one

ear and a decreasingly delayed signal from the other;

×2 : Nyquist limit. The sampling frequency must be at least twice the

highest frequency within the sampled signal.

For example, if the maximum frequency of interest is 2kHz, the minimum

sampling frequency of the input data would be 16kHz. In practice, the

maximum frequency of interest is a little lower, and the input sampling

frequency of 44.1kHz can be reduced by a factor of three to 14.7kHz.

The peak-finding algorithm

The temporal resolution of the correlogram taken at 14.7kHz is approximately

136µs. Since the human sensitivity to interaural time difference is more than

an order of magnitude finer than this, the data must be interpolated in order

to find a peak. However, there is clearly no need to interpolate the entire data

set: only the likeliest data intervals need to be examined more closely. A

simple algorithm has been devised to interpolate the data using a cubic

regression technique.
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Efficient interpolation

The purpose of an interpolation algorithm is to take an arbitrary discrete-time

function, y(n) , n = 0, 1, ... , N−1, and to synthesise data points between the

sampling intervals so that n is no longer required to be an integer. There are

two classes of algorithm that can be used to perform this task: true

interpolators and approximators. Interpolators satisfy the requirement that

the output data equals the input data at the sampling intervals, and

approximators do not [Lehmann 1999]. The algorithm described here is a true

interpolator.

There are a number of methods for interpolating. For discrete-time

sampled signals, it is generally the case that the more terms the interpolation

algorithm possesses, the more closely the interpolated data will fit the original

continuous-time data. A simple class of interpolation algorithms is based on

low-order polynomials. The first four polynomials are shown in Figure 4.11.

truncation

linear

zeroth

first

second

third

parabolic

cubic

y = d

y = cx + d

y = bx² + cx + d

y = ax³ + bx² + cx + d

Interpolation type Order
General formula

y dy/dx d²y/dx²

zero zerodiscont.

continuous discont. zero

smooth continuous discont.

smooth smooth continuous

zero

y

x discontinuous

y

x continuous

y

x smooth

y

x

between nodes

Figure 4.11.  A table of polynomial interpolation formulae, with graphs to

illustrate the terms ‘zero’, ‘discontinuous’, ‘continuous’ and ‘smooth’.

To find a peak that falls between discrete values, a smooth output is

required. Otherwise, the discovered peak will always fall on an original data

point (in interpolation terminology, these original data points are called

‘nodes’ or ‘knots’). 

Quadratic interpolation is the simplest kind of polynomial interpolation

that fulfils this criterion. A quadratic interpolator was implemented, but found

to be unsatisfactory. This is principally because this second-order model does
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not possess the flexibility to program both start and end data points and start

and end gradients, all of which can be derived from the input data, whereas

high-order polynomials do.

A cubic method is adopted in this algorithm. Cubic coefficients are

relatively easy to derive from input data, and cubic equations may be

manipulated and solved rapidly, while higher-order polynomials are harder to

solve. Sinusoids with different frequencies and phases were used to test the

algorithm. It located the peaks of these signals with a time-domain error of

less than one thousandth of a sample.

To derive this equation, we will assume that a peak is to be found in the

discrete-time sequence y(n), n = 0 � N−1. First-order derivatives, y´(n) and

y´(n+1), are calculated using two more neighbouring samples:

 

y′(n) =
1

2

�
y(n + 1)− y(n− 1)

�
(4.3a)

y′(n + 1) =
1

2

�
y(n + 2)− y(n)

�
(4.3b)

Thus, to ensure that there are no ranging errors, an extra point is calculated at

each end of the correlogram. These points are disregarded when the

maximum is being located.

To simplify the derivation, it is assumed that the value to be interpolated is

in the continuous interval 0 ≤ n ≤ 1, where the integer values correspond to

sampling intervals. It is trivial to shift data into this range and back again. The

coefficients for the cubic equation are then calculated as follows:

y(n) = an3 + bn2 + cn+ d

y′(n) = 3an2 + 2bn+ c

⇒ y(0) = d ;

y′(0) = c ;

y(1) = a + b+ y′(0) + y(0) ;

y′(1) = 3a+ 2b+ y′(0)

⇒ a = 2
�
y(0)− y(1)

�
+ y′(0) + y′(1) ;

b = 3
�
y(1)− y(0)

�
− 2y′(0) − y′(1)

(4.4)

This equation is identical to the cubic convolution interpolator derived by

Keys [Keys 1981]. The algorithm is reviewed alongside other members of the

cubic family, and many other kinds of interpolators, in Lehmann’s review

[Lehmann 1999] — the α = −½ instance of cubic interpolator is the one derived
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here. Lehmann’s analysis focuses on the interpolation kernel. This is the

effective impulse response of the interpolator. It can be shown that the kernel

function for the equations above is:

y(n) =
¼̧º

3

2
n3 − 5

2
n2 + 1 |n| < 1

−1
2
n3 + 5

2
n2 − 4n + 2 1 ≤ |n| < 2

0 |n| > 2

(4.5)

This function has the time- and frequency- domain characteristics shown

in Figure 4.12.
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Figure 4.12.  Time- and frequency- domain characteristics of the

interpolation kernel. The dashed line on the frequency-domain plot

shows the magnitude response of the ideal interpolator — a sinc function

low-pass filter.

 Keys also derives another class of cubic interpolator that requires six data

points. In theory, this is more accurate than the four-point technique defined

above. However, a six-point cubic interpolator would require the running

cross-correlation to be extended by two data points. This would slow the

computing of the correlogram by approximately 10%. Maeland [Maeland

1988] demonstrates that the four-point cubic interpolator is also less accurate

than the cubic B-spline, which has become a very popular interpolation

technique. However, Maeland concludes that because the cubic B-spline takes

so much longer to calculate, and the algorithms are so different, ‘no [direct]

comparison of the cubic B-spline with other interpolation kernels should be

done’ [Maeland 1988: 216].

The greatest advantage of the cubic interpolator in this instance, however,
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is that a peak-finding formula is easily derived from the interpolating equation

by equating the first-order derivative y´(n) to zero, and solving the resulting

quadratic within the interval 0 ≤ n ≤ 1. (In this case, the value of interest is n

rather than y(n). Therefore the technique is called reverse interpolation.)

There is one important exception where this formula may not be used. The

principal maximum occasionally appears just outside the range of a

correlogram. When this happens,  y´(0) and y´(1) are of the same polarity,

because there is no turning point in the test interval. It is necessary to check

for this case explicitly, because it renders the quadratic equation insoluble.

Therefore, when y´(0) and y´(1) are of the same polarity, the peak-finding

subroutine bypasses the quadratic equation solver, and returns with n = 0 or

n = 1 , according to whichever value of y(n) is higher.

When finding the initial maximum, the correlogram is biased in favour of

central values. This is achieved by multiplying by a linear ramp function that is

1 at the centre and 0.95 at the edges. A similar practice is employed by Stern

and Colburn [1978]: it forces the peak-detecting algorithm to favour central

ITDs when faced with highly periodic signals. The periodicity is then

prevented from causing peaks at implausible ITDs.

Using this method to process a 19-point correlogram at 14.7kHz, the

number of data points that need to be handled becomes far more manageable:

14700 Hz × 24 bands × 19 correlogram points

≈ 6.7 million points per second

This requires less than 2.5% of the computation demanded by the

conceptual model in Figure 4.10.
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Windowing method for extracting ITDs

Figure 4.13 shows the flow of binaural data through the spatial feature

extractor, and the way in which the input sampling frequency of 44.1kHz is

eventually converted to a slower data rate of 2.45kHz.
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input data

14.7kHz

1:3 decimation

peripheral model

1:6 decimation

2.45kHz

1:6 decimation
through averaging

find IID find ITD
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output onsets
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Figure 4.13.  Internal sampling frequencies used within the algorithms.

To arrive at the output sampling frequency, the input data must be reduced

sixfold. This is achieved using windowed averaging of adjacent correlograms.

Since the correlogram’s absolute level is of no consequence when finding its

peak, the sum is used in place of an average. Summed correlograms emerge at

a rate of 2.45kHz, and ITDs are extracted only from these. The windowed

averaging algorithm works as follows:
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X(τ, n) =
13Ð
m=0

χ(τ, 6n+m)

=
13Ð
m=0

τ=9Ð
τ=−9

l(6n +m+ τ) r(6n+m− τ)

(4.6)

where χ(τ,n) is the component correlogram centred around sample n. The

factor of 6 comes from the 1:6 decimation built into this formula: samples are

dropped so that X is a sixth of the length of l and r. It can be seen that sum

correlograms overlap, sharing most of their data with their neighbours. The

minimum window length is 14 samples, which is approximately 950µs. This

value is chosen for its closeness to the spatial integration time of the human

hearing system, which is approximately one millisecond [Wallach et  al. 1949].

However, there is no reason to presume that the square window featured here

models the human auditory system optimally.

In lower frequency bands, the number of samples that constitute each sum

correlogram is increased to one full period of the centre frequency of the band.

For example, in the lowest band, which has a centre frequency of 60Hz, the

window length is 14700/60 = 245 samples. This length may seem cumbersome,

but if it is not used, the correlogram output will be strongly influenced by the

instantaneous phase of the input signal [Ifeachor and Jervis 1993]. As the

algorithm is designed not to make use of forthcoming audio data (see Section

3.3), window lengths beyond 14 samples are extended into the past.

Owing to the amount of input data shared by adjacent sum correlograms, a

basic implementation of this algorithm would perform the same series of

Jeffress computations many times. This would be a particular problem in

lower frequency bands. If data is computed afresh for every sum correlogram,

about 97% of the correlogram calculations for the lowest frequency band —

239 out of 245 — will be identical in the next iteration. Before the averaging

window completes its pass, each component correlogram, χ(τ,n), will have

been calculated 40 or 41 times.

Without much effort, a far more efficient routine can be implemented,

where each component correlogram is calculated exactly twice. The previous

sum correlogram is used as a starting point for calculating the next sum

correlogram. Its bottom six component correlograms are re-calculated and

subtracted, and six new correlograms are added on. This simple optimisation

reduces the processing load of this part of the algorithm by 60%, and of the

entire localisation algorithm by 45%.
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In theory, further optimisation is possible by storing all the component

correlograms so that they are calculated only once, but this requires storage of

over 13,000 data points. In MATLAB [Mathworks 2004], even when plenty of

RAM is available, the overhead caused by memory swapping and

administration means that the algorithm takes 40% longer to run, even though

there is a theoretical saving in computational demand (see Section 5.5).

Interaural time differences are extracted from sum correlograms using the

cubic interpolation method described in the previous section, with the peak

ITD rounded to τ/16. This is effectively 16:1 interpolation of the correlogram,

yielding a temporal accuracy of 8.5µs.

Method for extracting IIDs

The IID extraction technique uses a square-windowed, time-corrected

comparison of sum-squares of the left- and right-ear signals of each band (see

Figure 4.6c). The same length of window is used in both time and intensity

difference calculations — whichever is the greater of fourteen samples, or a

period of the band’s centre frequency. However, in IID calculations, left- and

right-ear windows are advanced or retarded symmetrically to offset the

interaural time difference. This ensures that readings are taken at similar

phases in both signals. An example of this method can be seen in Figure 4.6.

The output from this comparison is based on the judgment decision

favoured by Sayers and Cherry [1957] (see Section 4.3.2). The difference of the

two ear readings divided by their sum is used. This always lies in the range

[−1  1]:

d =
el − er
el + er

(4.7)

where el and er are the left- and right-ear signal energies. Energy is calculated

by squaring and then integrating the signal. To improve contrast when the two

signals are similar in level, the square of the decision variable is mapped to a

look-up table location, and thus to a lateral angle. It must be remembered that

d2 is unipolar, so the sign of d must be determined before squaring to preserve

the distinction between left-heavy and right-heavy signals.

Similar results may have been achieved using a low-pass filter followed by

piecewise energy comparison: this would create a level-meter model of the

kind implemented by Macpherson [1991] and recommended by Hartmann

and Constan [2002]. The working of the model presented here may be seen as

a level-meter model where the input windowing performs as the meter’s input
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filter. Running the effective impulse response through a FFT produces a

cascaded comb filter and a low-pass filter with a comb frequency of about

1kHz and a 3dB point of approximately 500Hz (Figure 4.14).
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Figure 4.14.  Frequency response of a filter that is equivalent to averaging

14 consecutive samples at a sampling frequency of 14.7kHz.

4.3.5 Mapping to histograms

Each interaural time and intensity difference can be mapped via a look-up

table to a lateral angle histogram. This is a function of truth value against

lateral angle. 

This process has an antecedent in Huang’s localisation algorithm [Huang et al.

1997], and a system based on 5°-resolution, one-one look-up tables is used by

Palomäki et al. [2004]. Huang’s method considers only ITD, but the argument

for the histographic approach is even stronger when IIDs are taken into

account because the mapping of IID to lateral angle becomes increasingly

complex above about 800Hz, and ceases to be one-one. There are two other

motivating reasons for the histographic approach over simple ITD-to-angle or

IID-to-angle mapping. Firstly, there is usually some imprecision in interaural

difference calculations, and it is better to deal with this imprecision than to

ignore it. Secondly, different dummy heads have slightly different acoustical

characteristics: even the same head will produce different cues as the source

distance is varied. Therefore there will be some uncertainty in mapping from

An Onset-Guided Spatial Analyser for Binaural Audio



4  Localisation Algorithm          87       

an extracted ITD or IID to an angle of incidence.

To ensure fast execution, it is necessary to store all the possible data tables.

However, the price of the convenience of a ready-generated set of tables is a

considerable amount of memory. Two different sets of tables must be

generated and stored: one set for ITD information, and one for IID

information. Each of these sets contains 24 tables: one for each critical band.

Every one of these tables is a two-dimensional array of data locations. One

dimension is lateral angle. Every angle is represented from −90° to 90° in 1°

increments, so there are 181 indices in this dimension. (In practice, owing to

the symmetry of the head, only one side of this data needs to be represented,

so there are only 91 indices.) The second dimension is either ITD in 8.5µs

increments, with 120 indices, or IID in an internal format, with 51 indices.

Each data location contains a truth value. In total, each ITD table contains

91×120 = 10920 data entries, and each IID table contains 91×51 = 4641 data

entries. Since there is one table per critical band, the two table sets require

373 464 entries. These memory requirements are shown graphically in Figure

4.15.

91 angles
truth values

12
0 

IT
D

s

24 critical bands

91 angles
truth values

51
 II

D
s

24 critical bands

91 × 120 × 24 = 262 080 entries 91 × 51 × 24 = 111 384 entries

Figure 4.15.  Graphical representation of the ITD (left) and IID (right) look-

up table sets, showing total memory requirements.
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4.3.6 Duplex theory weighting

At low frequencies, the human auditory system weights ITDs more than IIDs.

At high frequencies, IIDs dominate over ITDs. This phenomenon has come to

be known as the duplex theory. Subsequent investigation has refined the

duplex theory. The crossover between ITD dominance and IID dominance

occurs when the wavelength of sound becomes comparable to the dimensions

of a listener’s head. When dealing with the duplex theory, though, it is

important that it is not over-simplified, because it can be demonstrated that

both cues retain some salience across the frequency spectrum.

It is often hypothesised that IIDs are assigned a low priority at low

frequencies because human listeners naturally prioritise those cues that

furnish information which is clear and unambiguous. This teleological

viewpoint is defended, for example, by Hafter and Carrier [1972]. IIDs are very

small at low frequencies, owing to diffraction around the head. It can be

shown from the KEMAR HRTF data that the maximum diffuse-field IID is

approximately 2.3dB at 60Hz. The directional cues provided by low-frequency

IIDs will often be poor because small differences will need to be extracted with

a high precision for the data to be useful, and this is difficult. The influence of

source proximity on IID will also be proportionally higher. This makes IID

cues at low frequencies unreliable.

At high frequencies, the signal level fluctuations caused by head shadowing

become far greater, and the IID becomes a higher-priority cue. Conversely,

ITD-based cues change very little with frequency. However, if the stimulus is

highly periodic, high-frequency ITDs are ambiguous because interaural time

differences may plausibly extend over several periods, and many head angles

may be plausible for any one particular interaural phase difference. This is not

a problem at frequencies below about 800Hz, because all plausible ITDs at

these frequencies will fall within one half-period of the waveform.

In the past, trading experiments were often used to investigate the interplay

between ITD and IID at different frequencies. These experiments set the two

cues in conflict in order to determine the amount of one that is required to

offset an amount of the other. The result is a trading ratio that is usually

expressed in µs/dB. For certain reasons, this approach is now generally

regarded as obsolete. Firstly, the stimuli used in trading experiments deny

naturally-occurring physical relationships between the ITD and IID cues. Very

frequently, subjects perceive two distinct sources: one is chiefly time-panned
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and the other is amplitude-panned. This causes a wide distribution of results

in localisation experiments, and listening subjects will, if asked, report the

stimuli to sound ‘unnatural’ [Gaik 1993]. With some training, subjects can

become accustomed to opposed localisation cues, but distribution of results is

still fairly wide when ITD and IID cues are placed in conflict [Hafter and

Jeffress 1968]. Thus the ability of trading experiments to provide information

about the relative weighting of IID and ITD is uncertain at best.

Hafter and Carrier [1972: 1853] state another issue concerning trading

experiments: ‘Implicit in the use of the binaural trading ratio is the

assumption that functionally identical values of [ITD and IID] are in some way

identical in their neural representation. Otherwise the ratio itself is nothing

more than an interesting oddity, bearing no information about physiological

processes.’ However, any project that sets out to unite ITD and IID cues in a

localisation paradigm is compelled to make this assumption at some point. 

A final interesting slant on trading-ratio experiments is provided by Buell et

al. [1994], in which narrow-band noise, centred around 500Hz and with an ITD

of 1.5ms (which cannot occur naturally), is subjected to manipulation. Using

five listening subjects, they discovered that the influence of IID on lateral

angle is dependent on the interaural phase difference and bandwidth of the

test stimulus. This questions the methodology of any experiment that assumes

a simple trade of ITD against IID.

Macpherson and Middlebrooks [2002] investigate the duplex theory using a

number of methods that are largely devoid of the problems associated with

trading experiments. They conducted a series of listening experiments in

which either the ITD or IID was adjusted around a natural combination. The

resulting image movement was elicited from thirteen test subjects, and each

movement was converted into a dimensionless bias weight. Bias weight is the

ratio of the amount by which the ITD or IID of a natural sound source would

change as it was moved by the reported amount, to the actual amount that was

applied. An IID bias weight near zero at a certain frequency would thus

indicate that the IID cue is relatively weak, as large amounts of artifically-

imposed IID would be needed to move the image by a small amount.

Conversely, an IID bias weight of one would mean that it is such a strong cue

that the ITD cue is ignored in localisation.

Macpherson and Middlebrooks calculated ITD and IID bias weights at

three different frequencies for thirteen subjects, using filtered noise-based

stimuli. This is helpful, because when sinusoids or amplitude-modulated
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tones are used in duplex theory investigations, spatial perception is often

controlled overwhelmingly by either the fine detail or signal envelope. This is

not a natural listening condition. Noise, containing a natural combination of

fine detail and signal envelope cues, would appear to be more directly

comparable to natural stimuli.

The findings of Macpherson and Middlebrooks can be summarised as

follows:

• In common with trading experiments, considerable inter-subject

variation was experienced. Nevertheless, significant trends could

be extracted from the data.

• The calculated average bias weights for 2kHz low-pass filtered

noise were 0.93 for ITD, and 0.20 for ILD [IID].

• The calculated average bias weights for 4kHz high-pass filtered

noise were 0.11 for ITD, and 0.96 for ILD [IID].

These bias weights sum to more than unity, suggesting that the movement

experienced when both cues are manipulated naturally is smaller than the

sum of the movement of its component ITD and IID manipulations. This may

indicate a partial collapse of binaural fusion when unnatural movements are

attempted, creating the familiar two-image perception observed by Whitworth

and Jeffress [1961], Hafter and Jeffress [1968], Gaik [1993], and many other

researchers.

Unfortunately, there is a very limited body of research that deals with the

weighting of ITD and IID without assuming simple trading. Furthermore, the

majority of trading-ratio experiments focus on a small number of stimuli, and

avoid the problematic middle frequency range where dominance is exchanged

between IID and ITD.

Using a series of observations and assumptions, a cross-weighting law can

be tentatively advanced that is based on the bias weights found by

Macpherson and Middlebrooks. The derivation of this law follows.

Calculation of duplex theory weighting coefficients

The cross-weighting law employs two cut-off points, specified by two critical

band numbers. Below and including the first band, bl, the ITD weighting

coefficient, wITD(b), is greater than the IID weighting coefficient, wIID(b). Above

and including the second band, bh, wIID(b) is greater than wITD(b). In the range

between bl and bh, called the crossover range, the weighting coefficients change
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monotonically between their low- and high-frequency values. For reasons that

will become clear, the sum of wIID(b) and wITD(b) will not necessarily be unity.

bl is set to 8 (centre frequency 845Hz), and bh to 14 (centre frequency 2160Hz)

— this agrees with widely-observed behaviour.

Wightman and Kistler [1992] advance the suggestion that when a stimulus

is presented with little low-frequency content, its localisation is dominated by

IID. When low-frequency content is present (specifically below 2kHz),

localisation is controlled by ITD. Since the weighting coefficients in this model

are not adjusted when the stimulus changes, this behaviour must be encoded

by ensuring that the sum of values of wITD(b) below band bh is sufficiently

greater than the sum of values of wIID(b) above and including it. This will be

termed the ITD dominance condition.

The position of the centroid of the weighted sum of ITD and IID histograms

is equal to the weighted average of the centroids of the two histograms. Thus,

if the centroid is allowed to act as an indicator for source location in these

experiments, the bias weights may be used directly. Because these bias

weights are dimensionless, they will be approximately the same whether they

are calculated from ITD and IID data or from the lateral angle.

A first approximation would be to use the unprocessed bias weights below

bl and above bh, and to ramp linearly between the values in the crossover

range. However, this violates the ITD dominance condition, because the sum

of wITD(b) below bh would be 9.52, and the sum of wIID(b) above and including

band 14 would be 0.96 × 11 = 10.56. This is remedied by multiplying wITD(b) by

a linear ramp function below bh. An empirical law is used to generate this

function: it is calculated so that the sum of values of wITD(b) below bh is 3dB

greater than the sum of values of wIID(b) above it. The final formulae are

shown in Equations 4.8 and 4.9:

wITD(b) =
¼̧º
1.597 − 0.047b : b ≤ 8

0.0102b2 − 0.437b+ 4.06 : 8 < b < 14

0.11 : b ≥ 14

(4.8)

wIID(b) =
¼̧º
0.20 : b ≤ 8

0.152b− 1.016 : 8 < b < 14

0.96 : b ≥ 14

(4.9)

The two functions are depicted in Figure 4.16.

An Onset-Guided Spatial Analyser for Binaural Audio



4  Localisation Algorithm          92       

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
criticial band number

w
ei

g
h

ti
n

g
 c

o
ef

fi
ci

en
t

0.0

1.0

1.6

w

ITD dominates IID dominates
crossover

region

wIID

ITD

Figure 4.16.  Cross-weighting coefficients for ITD and IID histograms. 

4.3.7 Loudness weighting

Loudness weighting is applied to the histograms before they are combined

arithmetically. Critical bands in which the signal level is high are weighted

over those in which there is little active content. The localisation data from

relatively inactive bands is often dominated by low-level noise, and this noise

is thereby prevented from degrading the final histogram. The algorithm thus

serves as a simple, static masking model.

Some simplifications of loudness perception theory have been necessary to

enable simple, fast calculation of weighing coefficients. These simplifications

are as follows:

• It is assumed that the louder a frequency band, the greater its

relative influence on the perception of auditory space. It is then

assumed that the relationship between loudness and spatial

weighting is linear. Although these assumptions make sense

intuitively, they have not been tested formally.

• Dynamic changes that affect loudness perception, such as pre-

masking, are not included in the algorithm.

• To approximate the loudness of a single critical band, it is

assumed that the content of this band can be represented by an

amplitude-modulated sinusoid at this band’s centre frequency.

The instantaneous amplitude of this sinusoid equals the

instantaneous peak signal level.
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The loudness weighting model is based on the findings of Marks [1978],

which extend Stevens’s model [Stevens 1957] to binaural listening conditions.

Stevens found that a power law connects perceived loudness with sound

pressure, such that 10dB increase in SPL corresponds roughly to a doubling of

loudness. Marks finds that perceived binaural loudness can be modelled

simply by adding the sound pressures at the left and right ears. The extension

into this application is tentative, because Marks tests the hypothesis only with

pure tones.

As a basis for the loudness algorithm, Table B.2 of the International

Standard equal-loudness contours is referenced [BS ISO 226:2003]. This table

maps sound pressure level in dB to loudness in phons. Some alterations have

been made to the standard table:

• A 0 phon floor and a 100 phon ceiling have been imposed on the

data;

• Critical band 24, which has a centre frequency of 13 750Hz, falls

outside the domain defined by the standard. The standard values

for 12 500Hz have therefore been substituted;

• The table has been interpolated in the frequency domain using

cubic splines, and re-sampled at the critical band centre

frequencies.

The re-sampled look-up table is shown in Figure 4.17.
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Figure 4.17.  Interpolated BS ISO 226:2003 equal-loudness contours, used

in loudness weighting. Crosses show the centre-frequency data points

used within the algorithm.

The interpolated look-up table has eleven entries for each critical band.

These map input sound pressure levels (SPL) to loudness levels in phons. Data

points range from 0dB SPL to 100dB SPL in 10dB steps. An arbitrary SPL is

converted to phons using inverse-distance weighing for the two nearest

neighbours in the table:

L(s) =
(s+ − s)L(s−) + (s− s−)L(s+)

10
(4.10)

In this equation, s– and s+ are the lower and higher nearest multiples of 10 to

the input SPL, s. L(s) is the corresponding phon level.  L(s–) and L(s+) can be

read directly from the look-up table.

The SPL is calculated by finding the maximum absolute signal level

obtained from the sum of the offset windowed left and right signals. The

resulting level is converted to dBFS, and 90dB is added to produce a

reasonably-ranged value for the input SPL.
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Based on an approximation of the Stevens model, the level in phons is

converted to a weighting coefficient so that a 10 phon reduction in level

reduces the weighting coefficient by a factor of two. An equation that converts

the maximum signal level in each ear into such a weighting coefficient is:

wL = 2
L/10 (4.11)

One further rule is applied: if L is zero, the frequency band will effectively

be too quiet to be audible, so the weighting coefficient, wL, will be forced to

zero.

Two further effects have not been incorporated into the loudness weighting

algorithm, but they may make worthwhile extensions in the future. Firstly,

when the stimulus level is low, localisation blur is seen to increase [Blauert

1997: 155]. Martin [1995b] therefore recommends adding low-level noise to

the input signals before lateral angle calculations are performed, so that

localisation blur is increased when the are no critical bands with loud content.

Spatial impression has also been shown to increase linearly at higher listening

levels [Barron and Marshall 1981: 230]. This, however, may be an

epiphenomenon of a more familiar process: the time for which the reverberant

decay tail of a sound stays above the threshold of perception will be greater for

a loud source than a quiet source.
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4.4 The generative algorithms

Both table sets, ITD and IID, are generated using the KEMAR HRTF data of

Gardner and Martin [Gardner and Martin 1994] as raw data. This data set was

chosen because it is well-documented and freely available.

To convert the KEMAR data set into a usable set of histogram look-up

tables requires several stages of processing. The ITD and IID data preparation

processes are fairly similar. The KEMAR data contains complete sets of

monophonic head-related impulse responses (HRIRs) for two different sizes of

pinna. The characteristics of each data set are nearly identical at low

frequencies, but differences are more pronounced at higher frequencies where

the audio wavelength is comparable to, or smaller than, the size of the outer

ear.

The ITD and IID look-up tables are saved on disk, so that each generative

algorithm needs to be run only once. Therefore, unlike the analytical

algorithm, a generative algorithm does not need to perform its task efficiently.

In order for data from both sets to be considered, the look-up table

generation task is divided between a hierarchy of two routines. The

subordinate routine converts the input HRIRs of the small- and large-pinna

sets into tables of interaural time differences against angle of incidence. The

main routine uses the resulting data to populate the set of look-up tables.

Flowcharts for the ITD look-up table generating routines are shown in Figures

4.18 and 4.19.
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Figure 4.18. Generation of ITD histogram look-up table data. Main

routine.
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Figure 4.19.  Generation of ITD histogram look-up table data. Sub-routine.

Each head-related impulse response is filtered through the same auditory

peripheral model that is used throughout the system. The HRIR is first divided

into 24 frequency bands, and to each of these bands full-wave rectification is

applied, followed by a low-pass filter, 0 and decimation by 1:3 to 14.7kHz

(Section 3.4.1 covers the filter bank and cochlear model; Section 4.3.4 justifies

the decimation). Using the standard processing path ensures that each

channel of the impulse response is subjected to the same internal delays that

would be imposed on a test stimulus during signal analysis.

4.4.1 Recalculation of angles of incidence for the diffuse field

The Gardner and Martin HRTF data set was recorded 1.4 metres from the

recording head in an anechoic chamber. This is too close to the head to make

the data applicable to the diffuse field, or sources at a distance, without further

processing. The easiest way to correct the data is to work out the equivalent

diffuse-field angle for each near-field point, and then interpolate the data

using the new set of angles. The concept behind this correction can be seen

graphically in Figure 4.20, and the mathematics for this is as follows:
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θ′ = tan−1
sin θ − (r/d)

cos θ
(4.12)

 where θ´ is the equivalent diffuse-field angle of the near-field angle θ, r is

the radius of the recording head (0.076 metres), and d is the recording

distance (1.4 metres).
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Figure 4.20.  Diffuse-field correction.

Top: At 1.4 metres, a near-field source impinging on the head at 0° is

equivalent to a plane wave (diffuse-field source) arriving at the right ear

from 3.1° left.

Bottom: The extent by which diffuse-field corrected angle θ´ differs from

near-field angle θ across the horizontal plane. θ´ is always biased towards

the left when considering the right ear, and vice-versa.
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4.4.2 Delay estimation

The original Gardner and Martin HRTF data is arranged in complementary

pairs. However, once diffuse-field compensation is made to the data set, this is

no longer the case. For example, the original data values 10° and 350° are

symmetrically arranged, and could be used directly to form a stereo head-

related impulse response. Using the diffuse-field compensation formula,

however, these points become 6.9° and 347.0°, which are no longer

symmetrical. In fact, only one pair of symmetrical readings exists after diffuse-

field compensation (90°, 270°), so the interaural time difference cannot be

computed directly using an interaural cross-correlation algorithm.

In this system, absolute arrival time is estimated by finding the point in

each head-related impulse response where it reaches 5% of its maximum

value. The look-up table requirements demand that this arrival time be found

to an accuracy of one eighth of a sample, so 8:1 interpolation is applied to

every impulse response using the cubic spline interpolator from MATLAB’s

signal processing toolbox [Mathworks 2004]. Reducing execution time is not

important, because the look-up tables are not generated in run-time. 

Once a set of arrival times has been calculated, the arrival-time data is

interpolated using cubic splines, after wrapping the first and last data points to

improve interpolation. (The advantage of wrapping the data is that problems

regarding the treatment of end-points, for which the terminal gradient is

usually unknown, can be avoided.) Output data is mapped to all integers in the

domain [0° 359°]. Interaural time differences are then found by subtracting

each arrival time from its symmetrical partner. This halves the data set, as

ITDs from 1�180° are the negative of ITDs from 359�180°, and need not be

calculated. Output data is in the domain [0° 180°].

4.4.3 Derivation of ITD histograms from input data

This section describes the remaining operations, shown in Figure 4.17, that are

required to create the look-up tables. In each critical band, the ITD-versus-

lateral angle data from both pinnae are transferred to a two-dimensional table.

Initially, a truth value of one is placed wherever an ITD maps to a lateral angle,

and all other locations are set to zero.

The data is now processed in individual ITD slices. A slice is extracted by

fixing the critical band and the lateral angle, so that in each processing pass,

the algorithm concentrates only on the variation of truth value against ITD.

Every possible critical band and lateral angle is processed in such slices.
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Initially, each slice will contain two truth values of one, and the other

values will be zero, as shown in Figure 4.21a. One of the initial ones will

correspond to the small-pinna data, and the other to large-pinna data. The

first step is to fill the interval between these values with ones, as Figure 4.21b.

This is because the look-up table sets are intended to be as generic as possible.

Intervening values represent plausible ITDs for intervening pinna sizes.

The next stage extends the data beyond the upper and lower boundaries, as

it is also plausible that some situations — either those where the sources are

close, or those that use head and pinna metrics that differ from KEMAR — will

create localisation cues in this range. The further that data falls outside the

boundaries established by the KEMAR set, the less plausible it is. Therefore, a

ramp is applied to these truth values so that they fall away with distance from

the KEMAR boundaries. The width of the ramp is equal to the number of filled

spaces (this includes the KEMAR boundaries). The ramp function equation is:

x =

¨
n+ 1− s
n + 1 : s ≤ n

0 : s > n
(4.13)

where x is the truth value, s is the distance from the nearest KEMAR datum

point, and n is the total number of values between and including these points.

When the small-ear and large-ear ITDs are the same for a given lateral angle

and critical band, the spaces above and below this boundary are thus assigned

a truth value of 1/2. The effect of this function is shown in Figure 4.21c.
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a)  Initial state of slice

b)  Interval between ones is filled

d)  Extension upwards

ITD
(lateral angle and critical band number are fixed for each pass)

value=1 value=0

boundaries
c)  Ramps applied

Figure 4.21.  The effect of filling and ramping each slice of the ITD look-

up table.

After all slices have been processed, the remaining operation is to convert

the data from the [0° 180°] domain to the [0° 90°] domain. This is achieved by

folding the data over, so that the rear hemisphere is reflected onto the front.

Data over 90° is added to the corresponding data at 180°−θ, and all values are

clipped to 1.

Finally, in imitation of the plausibility hypothesis of Hartmann [1997],

some slices are filled in the way shown in Figure 4.21d, where the truth value

above the upper boundary does not decay to less than 0.2. This happens only

to the slices with the highest non-zero truth values in each table. The reason

for this process is that if an abnormally large ITD is detected during analysis,

the look-up table will be able to give a sensible result: it will localise the source

over a range of lateral angles that have the highest ITDs, but the relatively low

truth values will reflect the uncertainty of the prediction.

These operations can be seen in detail on band 16 (centre frequency

2925Hz) in Figure 4.22, and the complete ITD look-up table data set is

reproduced over two pages in Figure 4.23.
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Figure 4.22.  The generation of the ITD look-up table for critical band 16,

centre frequency 2925Hz. The slices referred to in the text run vertically

in these examples.  a) Calculated and interpolated monaural arrival time

versus diffuse-field lateral angle.  b) ITD histogram plotted from a),

unfilled.  c) Filled.   d) Filled with ramp function imposed.  e) Filled,

ramped, folded to [0° 90°], with the highest ITDs extended upwards.
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Figure 4.23a. ITD histogram look-up table data set. Critical bands 1–12.
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Figure 4.23b. ITD histogram look-up table data set. Critical bands 13–24.
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4.4.4 Generating the IID look-up table

The routines for generating the IID look-up table are very similar to those

behind the ITD. However, there is one important additional process that can

be seen in the subordinate routine flowchart in Figure 4.24, in which IIDs are

derived from the KEMAR HRTF data.

HRTF database
mono; 0° elevation;
5° azimuth intervals

of incidence
recalculate angles

interpolate with
1° accuracy

arrival time vs
lateral angle

IID table

from 0–355°.

181×24

filter bank

24 critical bands

= 4 344 entries

for diffuse field

energy
calculate signal

pressure law effect
cancel inverse

using j.d. formula
calculate IIDs

low-pass filtering
rectification /

Figure 4.24.  Generation of ITD histogram look-up table data. Sub-routine.

Owing to the proximity of the source to the dummy head, the inverse

pressure law exerts some influence that would be absent in the true diffuse

field case. This effect will be maximal when the source impinges from the

direction of one ear, where the IID will be biased by approximately 1dB in

favour of the nearer ear. Although the influence is relatively small at high

frequencies, at low frequencies it dominates other phenomena and is

therefore worth compensating. This is achieved for every energy calculation by

dividing the sum-square of each HRTF by the square of the instantaneous
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distance of that ear from the source. IID calculations using pairs of values are

then normalised for the diffuse field.

IIDs are calculated using the judgment decision formula of Equation 4.7.

This function, in common with the ITD, is bipolar and symmetrical. If the left-

ear and right-ear inputs are swapped, the result will be identical in magnitude

to unswapped data, and of opposite sign. Therefore only the positive data

needs to be stored. The square of the judgment decision is used as an index in

the look-up table, rather than the judgment decision itself. This uses the tables

more evenly, whilst preserving the [0 1] range of data. Of course, the sign of the

judgment decision must be ascertained before squaring.

The routine that converts the IID data into the histogram data set is

functionally identical to the ITD’s main routine. It comprises the same filling,

ramping, folding and extending processes. The IID histogram look-up table

data set is shown, over two pages, in Figure 4.25. The differences between low-

and high- frequency IIDs are particularly clear.
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Figure 4.25a.   IID histogram look-up table data set. Critical bands 1–12.
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Figure 4.25b.  IID histogram look-up table data set. Critical bands 13–24.
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4.5 Summary

This chapter presented the localisation algorithm. This converts the left- and

right-ear input signals of a binaural stream into a three-dimensional map

comprising truth values against lateral angle and time. The inherent

limitations of the binaural format mean that only one-dimensional

localisation is attempted at 1° resolution, on an axis from −90° to +90°. This

avoids ambiguities and front-back confusion errors, which would otherwise

occur frequently. All sources are therefore assumed to be unelevated, frontal,

and in the diffuse field. For most real or recorded sources, these

approximations may be made without much detriment to the results.

The 181-point function relating truth value to lateral angle is referred to in

this thesis as an output histogram. The localisation algorithm calculates

histograms at 2.45kHz (approximately every 410µs), using sliding windows to

extract interaural time and intensity differences (ITDs and IIDs) from the

filtered and rectified critical band signals. Both cues play important roles in

sound localisation. However, ITDs convey less ambiguous information than

IIDs, may more easily be used to simulate cues than IIDs, and are also easier to

extract precisely. Furthermore, the unconscious decisions made by a human

subject in combining of ITD and IID data into a single percept appears to be

very complicated. Hence, in spite of their importance, IIDs do not feature at all

in many existing localisation models.

ITD and IID are calculated separately for each of the 24 critical bands used

in this algorithm. ITD is found using interaural cross-correlation. As it is a

computationally demanding algorithm, the cross-correlation process is

optimised here by reducing the input sampling frequency as much as possible,

and then using a special interpolation formula to locate the correlogram’s

peak to a very high temporal resolution. IID is extracted by integrating energy

in ITD-corrected windows. Using look-up tables, the two types of interaural

differences can be converted into component histograms that are then

combined.

The formulation of look-up tables and weighting coefficients used to

generate and combine the histograms is also described in this chapter. In

total, there are three sets of look-up tables: one converts ITD values to lateral

angle histograms, another converts IID values, and a third is used to find

loudness weighting coefficients for each critical band.
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The ITD and IID histogram look-up table data sets contain unique data for

each critical band, which are derived from the KEMAR HRTF database of

Gardner and Martin [1994]. Loudness weighting data, used to combine

histograms across all critical bands, is based on BS ISO 226:2003. The loudness

of each critical band is approximated as a amplitude-modulated sinusoid at

the band’s centre frequency. A reduction in level of 10 phons within any band

halves its weighing coefficient. A further set of weighting coefficients are

generated to unite ITD and IID data. Owing to the complexity of the

relationship between ITD and IID, the method behind the generation of these

coefficients is highly speculative. Nevertheless, it is based heavily on other

authors’ listening experiments where this is possible. The loudness and duplex

theory weighing coefficients are used to combine the 48 histograms generated

at each sampling point into an overall histogram. Spatial attributes are

extracted only from this output.
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5 INVESTIGATION

More than one hundred different excerpts from binaural recordings are

analysed in this chapter. These form four main groups of stimuli, which will be

studied in separate experiments to investigate specific properties of the spatial

analysis algorithms. The assertions that are made in the previous two chapters

will be tested.

All experiments in this chapter are designed to investigate the localisation

of single instruments in a reverberant room. The first experiment of this

chapter investigates the precision of the localisation algorithm using two sets

of stimuli: tamborim hits [see glossary] and replayed square waves, at a

number of known source angles.

The second experiment of this investigation tests the onset detector. The

methodology for this section is based on the experiment of Supper et al.

[2005]. Instead of assessing the onset detector in the frequently-encountered

manner, by regarding its performance as a note-counter, it is tested in

conjunction with the localisation algorithm. The ability of the system to locate

a variety of complex instrumental and speech sources in a reverberant

environment is assessed, first in the absence of any other sound sources, and

then with an artificially-generated distracting noise source.

Two further experiments test the potential for expanding the spatial

analyser to extract secondary spatial attributes. In the first of these

experiments, four piano stimuli with different physical widths are analysed,

and a formula is advanced tentatively to relate the extracted data to the actual

angular source width. The second experiment focuses on the extraction of

source distance information. A function that reliably correlates the input data

to source distance is found.

Finally, the computational demand of the current MATLAB implementation

will be determined. This will demonstrate that the possibility exists for

creating a real-time version of these algorithms on existing equipment. 

An implicit purpose of this chapter is to effect a general validation of the

spatial auditory algorithms. It will be shown that the localisation algorithm

and the onset detector combine to produce meaningful results for a wide

range of programme material in a challenging acoustic environment.

All recordings in these experiments were made in Studio 1 at the University

of Surrey, using a Cortex Instruments MK2 dummy head microphone using
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44.1kHz sampling frequency and 24 bits resolution. Studio 1 is a classical

recording studio and performance hall, with a floor area of 250m². The

recordings were made with the audience seating present: this reduced the

hall’s reverberation time. As Figure 5.1 shows, the 60dB reverberation time of

the hall is approximately one second.
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Figure 5.1.  Reverberation time of Studio 1. This data is averaged from 36

tamborim hits and 27 replayed square waves at four metres from the

dummy head, with various source angles. Decay curves were

extrapolated to find the reverberation time wherever 60dB of dynamic

range was not available. Reverberation time data is unreliable in the very

lowest and highest bands, owing to limited energy content in the stimuli

at these frequencies.

5.1 Visualising the data

It is worth illustrating some of the features of the output histograms that will

be shown in this chapter. The localisation algorithm generates an output at

2450Hz: approximately every 408µs. This time interval, which will henceforth

be referred to as the spatial sampling period (SSP), will be used frequently in

this chapter. According to the precedence effect, two or three SSPs contain

most of the pertinent data that concerns source location [Wallach et al. 1949].

For comparison, a video frame spans approximately 80 SSPs, and late reflected

energy can affect spatial perception even 100ms — 250 SSPs — after onset

[Barron and Marshall 1981]. Such a large ratio between the shortest and

longest periods of interest can present challenges regarding the visual

representation of the data.
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Figure 5.2 shows raw output data from the localisation algorithm when

presented with a 250ms square wave burst, positioned 20° left in front of the

dummy head. The output data depicted here spans 500ms, which is 1225 SSPs.
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Figure 5.2.  Raw output from the localisation algorithm: truth value

versus lateral angle over time. The stimulus is a square wave at middle C

lasting 250ms, with 10ms fades in and out, replayed through a large

Lentek loudspeaker in Studio 1. The dotted horizontal line is at 20° left:

the actual source location.

Although the data is difficult to manage in detail at this scale, for sustained

stimuli the source position generally remains apparent while the stimulus is

active. However, for impulsive stimuli, it is usually necessary to use a finer

scale to study the detail around an onset. This is where the onset detector is

useful. Figure 5.3 shows a magnified version of Figure 5.2 around the detected
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onset at 63 SSPs (approximately 26ms). Each segment in this plot is loudness-

normalised so that the signal is still clear when its level is low.
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Figure 5.3.  Magnified localisation algorithm data: combined ITD and IID

cues for the square wave stimulus of Figure 5.2 (bottom graph). This

output histogram has been normalised by dividing each histogram by the

sum of loudness weighting coefficients (top graph). Zero time in this

figure refers to the detected onset, and corresponds to about 26ms in

Figure 5.2. The cross and arrows indicate the actual source location: 20°

left.

By averaging the three output histograms from 0–2 SSPs after the detected

onset and finding the peak of the result, a source location of 25° left can be

calculated. An error of 5° exists between the calculated and actual source

locations. These visualisation and analysis techniques will be used in the next

section to examine the characteristics of localisation error in the algorithm.

5.2 Localisation precision

There are many factors within the algorithm that could affect the precision

with which a source is localised. Many untested assertions were made in
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Chapter 4 during the formulation of the localisation algorithm. The least safe

of these assertions — those that have not been thoroughly tested by other

researchers and are not mathematically provable — are listed below:

• The physical parameters of the KEMAR and Cortex MK2 heads are

very similar, so databases recorded using KEMAR should be

compatible with stimuli gathered using the Cortex MK2 dummy

head.

• The creation method and the resolution of the HRTF database are

sufficient to render and store ITD and IID cues accurately.

• The diffuse-field correction of head angles will entirely compensate

for the most important near-field effects within the KEMAR data (see

Section 4.4.1).

• Histogram representation provides an effective way of combining

ITD and IID data across frequency bands to produce a unified

localisation decision. (Faller and Merimaa employ a more elaborate

method for combining cues from multiple onsets [Faller and

Merimaa 2004]. In their paradigm, truth values are plotted against

ITD and IID for a number of onsets. This effectively produces a three-

dimensional histogram. A centroid can then be extracted comprising

an ITD and an IID. However, this method is useful only when data

points from several onsets are available. See Section 2.4 for more

details of this algorithm).

Using the method presented in Section 5.1, the localisation error has

been calculated for a recorded set of 63 unelevated tamborim and square-

wave stimuli. These were played at a distance of 4m from the head, and at 1°

resolution. The angular error can be seen in Figure 5.4.
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Figure 5.4.  Localisation precision for two sets of stimuli. Dotted lines

represent rear sources; solid lines represent frontal sources. Results from

63 test stimuli are shown in these graphs. The maximum deviation from

normal is 18°. The average deviation from the normal for all data sets

is 9°.

Localisation accuracy data for the two stimuli show that the discrepancy

between the actual and calculated source angle is small for small angles, and

larger for larger angles. However, these errors are not unreasonably large when

compared with the performance of human listeners. The localisation

discrepancies bear strong similarities in pattern, but are slightly lower in

magnitude, than localisation variability data collected from six trained human

listeners by Makous and Middlebrooks [1990], although the localisation error

of around 10° at the aural axis matches data from a number of experiments

summarised by Blauert [1987: 41]. They also match the pattern of localisation

blur observed by Boone and Helleman [2004] for an artificial reflection,

delayed by 30ms, of a central speech stimulus.

The localisation error encountered in this algorithm can be attributed to a

number of causes. Firstly, the shape of IID data, particularly at high

frequencies, is heavily dependent on fine detail of the recording head and ears

[Møller et al. 1999]. Thus, it may not be safe to assume that localisation cues

will be similar for different manufacturers’ dummy heads with similar

proportions. Secondly, owing to the geometry of the head, a small change in

lateral angle for a central sound source has a much greater effect on interaural
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cues than the same angular change for a source positioned near the aural axis.

The interaural differences between stimuli positioned around the aural axis

may be too subtle to detect reliably and repeatedly. Thirdly, the correlogram

peak-finding localisation algorithm, used to derive the ITD, favours central

sources. To compound this bias, the ITD-to-angle look-up tables do not

contain phase-wrapped data, that would counteract the ambiguities that

occur when one ear leads the other by a whole wavelength. Very periodic

signals in the mid-frequency range, positioned near the aural axis, may easily

be mislocalised more centrally.

The action of IID bias is shown in Figure 5.5, in which the results of Figure

5.4 are split into time and intensity information. The ITD-based localisation

accuracy plot follows a very linear characteristic with a slightly larger gradient

than the normal. This would be symptomatic of the recording [Cortex] head

having a larger effective diameter than the analysed [KEMAR] head, but this is

not demonstrated by the head metric data provided in Chapter 4, Figure 4.3.

(It can also be noted from Figure 5.5 that the ITD and IID data are

complementary: localisation ability is impaired in the absence of either of

these cues).
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Figure 5.5.  Angular error of square wave stimuli in Figure 5.4, separated

into ITD and IID components. The dotted lines represent rear sources;

solid lines represent frontal sources.
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5.2.1 Investigation of a large localisation error

A small number of anomalous results are evident in Figure 5.4. One of the

largest discrepancies is generated by the 80° front right tamborim hit. This is

localised at 52° right: a 28° discrepancy between actual and localised angles.

The output histogram from this tamborim hit is shown in detail in Figure 5.6,

so that the anomaly can be investigated further. Figure 5.6 also contains a

graph of the histogram’s peak truth value against time, and the sum of

loudness weighting coefficients used within the localisation algorithm.
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Figure 5.6.  Output histogram for the front 80° right tamborim hit that

localises anomalously at 52°. Comparing the loudness weighting and

peak truth value graphs reveals that the onset was detected between

2ms and 7ms too late.

The loudness-sum function and the peak truth value function (which

relates to the confidence of the localisation decision) both reach their maxima

1–2ms before the detected onset, although the first local peak occurs 7ms

before. This proves two important things: firstly, that the onset detector is
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triggered at least 2ms too late; secondly, that the tamborim hit was so

impulsive in this example that its auditory onset, during which it generates

useful localisation data, was only 6ms long. Both phenomena are required

simultaneously to generate such an anomaly.

To investigate the phenomenon of late onset detection more closely,

another set of localisation data has been produced for the tamborim and

square wave stimuli. This data, shown in Figure 5.7, was produced by finding

the peak truth value of the histogram within 25ms of the detected onset, and

treating this peak as the true onset. Figure 5.8 summarises the adjustment in

onset times in order to produce this figure. Surprisingly, Figure 5.7 contains

more anomalies than the original data in Figure 5.4, and these anomalies are

more serious. However, the rest of this data follows the normal line a little

more closely than the original onset-guided data. Close inspection has

revealed that the more serious anomalies are all caused by atypical

localisation data just before onset, causing focussed localisation in the ’wrong’

position for between three and five SSPs.
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Figure 5.7.  Actual versus calculated localisation angle for the tamborim

and square wave stimuli. In this figure, analysis points were determined

by the peak truth value 25ms around the detected onset.

From these results, it can be concluded that the onset detector determines

lateral source angle more consistently than the use of peak truth value alone,

although in a few cases the latter method will produce an output that is closer

to the actual source position. It can be hypothesised that because most of the
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onsets were adjusted by shifting them backwards in time, there is a general

drift of lateral angle away from the centre of the sound field over time. This

drift can be seen explicitly in Figure 5.3, and can also be noted in other

examples of the square wave stimulus. The cause of this drift cannot

satisfactorily be explained, except that it may be a caused by a specific

environmental reflection. Its characteristics cannot, however, be attributed to

a first-order reflection from the studio floor, as this would tend to pull the

image towards the centre. Is it necessary to justify the attribution of this

anomaly to a room acoustics phenomenon with a further example.

16

20

1

7

3

16

12

4

time
adjustment

5.0ms–

before
10.0ms

2.5ms–

before
5.0ms

within
2.5ms

2.5ms–

after
5.0ms

5.0ms–

after
10.0ms after

>10.0ms

Figure 5.8.  Bar chart of the amount of time adjustment applied to the

detected onsets of the 63 tamborim and square wave stimuli in order to

plot Figure 5.7. The permitted extent of this adjustment was arbitrarily

set as [−20SSP +40SSP], which is approximately [−8ms +16ms].

5.2.2 Localisation of an anechoic source 

Figure 5.9 is the output histogram for a monophonic square wave that has

been convolved with two of Gardner and Martin’s anechoic KEMAR impulse

response recordings [Gardner and Martin 1994] to position it 20° left in a

binaural sound field.

The short-term drift of the calculated lateral angle away from the centre

line, which is clear in Figures 5.2 and 5.3, is absent in this example. Hence it

can be inferred that this drift is not inherent within the analytical algorithm.

Although this single example does not prove that the drift is caused by an

acoustic reflection, it does indicate that it is produced by an environmental

characteristic. The calculated lateral angle in Figure 5.9 is approximately 25°

left. This 5° departure from the actual position is caused mostly by the
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proximity of the impulse response generator to the dummy recording head

when the KEMAR signals were made. The analytical algorithm has been

diffuse-field compensated, so this small lateral shift is expected (see Section

4.4.1).
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Figure 5.9.  Long-range and zoomed in views of the raw output from the

localisation algorithm. The input is a synthesised square wave at

middle C, positioned 20° left by convolving it with a KEMAR head-related

impulse response. The stability of the calculated lateral angle in this data

may be compared with that of the recording in Figures 5.2 and 5.3. The

initial spike in the loudness-normalised peak truth value is caused by the

very low loudness quotients at the beginning of this example.
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Only a small number of cues have been tested in this section. Anomalous

results have not been re-measured using different recordings, so

generalisations regarding anomalies must be treated carefully. The onset

detector and localisation algorithms have now been shown to determine

source location effectively for two types of sound source, both of which have

fast rise times. A tamborim hit also has a fast decay time. Tamborim onsets are

therefore only a few milliseconds long, so precise onset detection is important

for localisation of the instrument. Localisation anomalies, which are caused by

late onset detection, become more problematic the closer the source is

positioned to the aural axis.

Attempting to correct anomalies from late onset detection by using the

histogram as an ‘onset corrector’, to find the peak truth value around a

detected onset, produces anomalies of a different kind by detecting false truth

value peaks. These are produced before onset and could not be detected by a

human listener. For the rest of this chapter, the original onset-guided solution,

from which Figure 5.4 was plotted, will be maintained.

An effect can be seen in the square wave results where the waveform is

pulled away from the centre line the longer it continues, and this can affect

localisation by several degrees if an onset is detected slightly too late. This

phenomenon cannot be explained, but can cautiously be attributed to the

acoustics of the recording studio.
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5.3 Onset detector performance

So far, the onset detector’s performance has been assessed only as far as its

ability to extract information from single musical notes. There is a limit to the

number of general conclusions that may be inferred from the analysis of one

onset. This section will test the onset detector using extended musical and

oratory examples containing many onsets.

Many onset detectors are assessed on their performance as note-counters.

A performance benchmark can then be formulated by manually counting the

number of musical events in a passage, and then comparing this count with

the number of events that the algorithm misses, and the number of spurious

detections.

The note-counting approach assumes that musical events are equivalent to

auditory onsets. However, when the definition of an auditory onset is

extended to suit the spatial analysis task (see Section 3.1), it is no longer

satisfactory to assume this relationship. Auditory onsets are now defined as

intervals of time during which correct localisation information may be

extracted from the binaural stream. For reference, however, a simple

comparison of the output of the onset detector against sections of four

binaural waveforms can be seen in Figure 5.10.

A more relevant method for testing the onset detector is used in this

section. This extends the methodology of Supper et al. [2005], which

investigated the detector as a component of the spatial analyser. In the first

part of this experiment, the onset detector is tested by assessing the ability of

the spatial analyser to localise a complex source over an extended period of

time. The effectiveness of such localisation relates to the precision and

sensitivity of the onset detector. The second experiment investigates the

robustness of the onset detector further, by adding coherent white noise to the

binaural stimuli.
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Figure 5.10.  Binaural input waveforms around detected onsets, for four

different sound sources. None of these examples are initial or final onsets

from the excerpts. The grey box encloses 2ms of audio. This is the

amount by which the onset detector is permitted to look ahead.

5.3.1 Onset-guided localisation of an individual source

Figure 5.11 presents localisation data from a 14-second passage of fast solo

clarinet music. The clarinet was positioned in the frontal hemisphere, 60° left

of the recording head, and four metres away. Analysing this signal, 53 onsets

were detected. To produce the results shown, the histograms have been

loudness-compensated, and data from every detected onset added together.

To improve the realism of the results and to suppress secondary triggering of

the onset detector when strong level fluctuations are encountered, an

additional rule has been applied in plotting the diagrams in this section: any

onset detected less than 20ms after another onset is excluded from

calculations. 
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Figure 5.11.  Sum of loudness-normalised output histograms around the

53 detected onsets in a 14-second clarinet excerpt.

A number of features of Figure 5.11 indicate that the onset detector is

performing well. The most noticeable of these is the strong convergence in

localisation data around the 0ms point, giving rise to the horizontal bars

between 60° and 80° left in the output histogram. This is accompanied by

significant increases in the peak truth value and the sum of loudness

weighting coefficients. Investigation of the individual onsets shows that the

large apparent width of the histogram peak is a phenomenon of the

localisation algorithm: it is not caused by the onset detector picking up strong

lateral reflections.

One other interesting aspect of Figure 5.11 is that the histogram becomes

far less focussed, and its peak lowers, well within the scope of the time range

shown. The transition from the state when localisation is possible to the state

when it is not — the auditory offset — occurs between 50ms and 80ms after the

beginning of the auditory onset. The majority of clarinet notes in the extract

are longer than this, so this transition is most likely governed by the presence

of late acoustic reflections. The 50–80ms range of auditory onset is consistent
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with the time interval that has been chosen for existing measures of spatial

impression (for example, Bradley and Soulodre [1995]), to separate source-

related secondary attributes such as apparent source width from

environment-related attributes such as listener envelopment. This time

constant grows from properties of early reflections within the recording

environment.

Although Figure 5.11 indicates that the onset detector works satisfactorily

for the clarinet tone, the visualisation method it employs is such that detection

of genuine auditory onsets cannot be separated easily from the detection of

spurious onsets. Figure 5.12 is a more critical representation of the

localisation data. It shows the location of the maxima of every output

histogram. When all 53 onsets are included, the distribution of localisation

data in the histograms can be inspected more precisely. The different methods

of representing onset-guided localisation data will be distinguished by

referring to the method used in Figure 5.11 as the histogram sum technique,

and the method Figure 5.12 as the hit count technique. 

As expected, at 0ms (the detected onset time) there is a pronounced change

in the distribution of localisation data. Before onset, a vaguely left-heavy

distribution can be seen, with an approximately 3:1 distribution of histogram

peaks between the left and right hemispheres of audition. This ratio shifts

heavily from approximately 2ms before the detected onset, so that a 3:1 ratio

now separates histogram peaks that appear 30° or more to the left from those

that do not. It can also be seen that between 60% and 70% of the histogram

peaks are distributed between 60° and 90° left.

The obverse of this statement is that 30–40% of the detected onsets in the

clarinet excerpt do not occur near the actual source location. However, this

observation indicates only where each histogram peak occurs — it does not

take into account the magnitude of each truth value maximum, and therefore

the ‘confidence’ of each localisation decision. Neither does it convey the

importance of other information, such as the signal loudness at the time of

onset. This data is incorporated into Figure 5.11, in which the focussing of

histogram data around the onset is more striking.

Owing to these differences between Figures 5.11 and 5.12, it can be inferred

that much of the mislocated data shown in Figure 5.12 is based either on

short-lived, low-loudness anomalies of the kind that are manifested in Figure

5.7, or on data from room reflections. These would be masked by a human

listener, but the spatial analyser that is tested here lacks a masking model. The
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decision not to include a masking model was taken during the development of

the onset detection algorithm, since there is no reason to believe that spatial

auditory processing is subject to the same masking mechanisms that affect

conscious sound perception. In fact, there is more reason to believe that the

opposite is true. Basic spatial processing, such as ITD and IID extraction, takes

place at a very low level of the human auditory system. However, a simple

long-term suppression mechanism, intended to mask strong early reflections,

may improve the localisation data.

To suppress the detection of spurious sources in a future implementation

of the spatial analyser, parameters within the onset detector could be adjusted

automatically and continuously, to adjust the sensitivity of the algorithm to

suit each stimulus and environment. This has been investigated informally by

adjusting the onset detector, specifically the parameters α
0
(t) and α

1
(t), to

control the rate of onset within maximum and minimum limits. (The results of

this experimentation have been promising, but a formal evaluation has not yet

been conducted).

A more refined implementation of the onset detection algorithm will also

incorporate data besides the angle at which the histogram peak occurs. For

example, the peak value of the output histogram could be used as an

indication of confidence. This would imitate the now standard use of the

interaural cross-correlation function as an indicator of interaural coherence,

and hence as a measure of source width and localisability (the inverse

relationship between coherence and localisability is discussed in Hartmann

[1983]). This idea is investigated in the forthcoming sections.
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Figure 5.12.  Distribution of truth value maxima around the 53 detected

onsets of the clarinet excerpt. The time axis has been rotated by 90° from

its familiar orientation for clarity. The three transverse lines trace the

quartiles and median, to make the data distribution clearer to see. Thus

the data is divided into four sections, each of which contains

approximately one quarter of the 53 total maxima in each row.

5.3.2 Onset-guided localisation of different sources

It is now clear that different instruments, with different envelope

characteristics and hence different lengths of onset, present different

challenges for a localisation algorithm, and for spatial analysis in general. In

Figures 5.13–5.16, the localisation algorithm’s performance is presented for

four more musical and oratory sources. All are positioned 60° left, four metres

from the dummy head: a solo played on a melodica [see glossary], a passage

from a piano menuet, male speech, and a latin rhythm played on the

tamborim.

Many general observations can be made from this data. The long sustain

characteristics of the clarinet and melodica are clearly visible in the histogram
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sums, and offset is seen to begin about 50ms after onset. Relatively few onsets

are detected in the clarinet and melodica examples compared with the

remaining excerpts. In fact, the number of counted onsets is a little fewer than

the number of notes in the two excerpts. The histogram sum and hit count

methods both work well for estimating source position.

In contrast, the stimuli that have shorter notes and sharper decay

characteristics cause the spatial analyser to respond very differently. All are

localisable using the histogram sum technique, and the short onset times can

clearly be seen. In the speech and tamborim examples, onset is very short: all

useful localisation data from the tamborim sum histogram has ceased 30ms

after the detected onset; in the speech extract, this time is approximately

50ms. Owing to the chaotically fluctuating nature of the piano, speech and

tamborim signals, and also to the shortness of their auditory events and the

high speed of their decay, many onsets are detected. The average rate of onset

in each example is between 5 and 10Hz. It is likely that many of these detected

onsets are caused by strong reflections. This is particularly true for the

tamborim stimulus, which is the loudest, fastest-decaying, most noise-based

instrument, and therefore the most likely to create strong, discrete reflections

that are included erroneously as onsets.

These characteristics explain the results from the hit count technique. In

the case of the tamborim hit, the only indication of the presence of the

instrument in the hit count graph (Figure 5.16 bottom) is that the quartile and

median lines change by 20° from their positions for random data. This shift

would require one third of onsets to identify source position as 60°, or 22% of

onsets to identify the source position as 90°, amongst randomly-distributed

data from early reflections. In the other quickly-decaying instruments, about

30–40% of counted hits occur around the actual source location, and about

50% in the correct lateral quadrant (from 45° in front of the listener to 45°

behind).

Mellinger [Mellinger 1991: 58] uses a simple method to address the

problem of dealing with different instruments with different attack

characteristics. A specific kind of onset detection algorithm — essentially a

specialist type of band-pass filter — is run four times with four different

integration time constants, approximately spanning the interval between 2ms

and 20ms. When all four iterations are completed, an output is chosen which

represents the best compromise between strength of detection and sharpness

of contrast.
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Figure 5.13.  Analysis of the melodica solo excerpt.

This excerpt is 28.5 seconds long. 21 onsets are detected and included.

Actual source position 60° left, frontal hemisphere, distance of 4 metres. 

Top: histogram sum technique.  Bottom: hit count technique.
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Figure 5.14.  Analysis of the piano menuet excerpt.

The excerpt is 24 seconds long. 173 onsets are detected and included.

Actual source position 60° left, frontal hemisphere, distance of 4 metres.

Top: histogram sum technique.  Bottom: hit count technique.
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Figure 5.15.  Analysis of the male speech excerpt.

The excerpt is 15.3 seconds long. 94 onsets are detected and included.

Actual source position 60° left, frontal hemisphere, distance of 4 metres.

Top: Histogram sum technique.  Bottom: hit count technique.
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Figure 5.16.  Analysis of the tamborim latin rhythm excerpt.

The excerpt is 11.3 seconds long. 102 onsets are detected and included.

Actual source position 60° left, frontal hemisphere, distance of 4 metres.

Top: histogram sum technique.  Bottom: hit count technique.
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5.3.3 Localisation in the presence of noise

The results presented so far are from individual sources recorded in a

reverberant room. A more critical indication of the robustness of the onset

detector can be obtained by analysing the same stimuli in the presence of a

distractor signal. Coherent [centrally-localising] white noise will be summed

with the binaural signal, to behave as a distractor. It is largely free from the

prolonged increases in signal energy across frequency bands that signify an

onset, so onset-guided localisation should not be perturbed by its presence.

The level of the distractor for each stimulus has been set so that its rms level is

approximately 15dB lower than the rms level of the source.

To test the operation of the onset detector, two sets of data have been

derived from the noisy stimuli. The first takes localisation data from the times

identified by the onset detector, and the second extracts data from randomly-

generated times. Provided the onset detector is serving its purpose, it can be

expected that marked differences will be seen between the two sets of data,

with the distractor signal strongly present in the random-time data, and the

onset-guided data demonstrating robustness against the distractor. Figure

5.17 presents the sum histograms from all the results, and Figure 5.18

summarises the hit count data.

In Figure 5.17, the effect of the coherent distractor can clearly be seen as a

centrally-positioned stripe and cloud, in both the random-time examples and

the onset-guided examples before 0ms. For all examples but the piano,

however, the effect on onset-guided localisation after 0ms is minimal. The

control histogram data, taken at random times, confirms that the distractor

noise is substantial enough to disrupt localisation in the absence of onset

detection. This is especially noticeable within the speech and tamborim

stimuli, as these contain long periods of inactivity which are entirely taken

over by the distractor signal. In every example, there are a few extra onsets

introduced by the distractor. In all cases but the piano and the melodica,

however, these onsets constitute fewer than 8% of the total number of onsets.

In addition to the creation of these spurious onsets, two further indications

of performance impairment can be seen in Figure 5.18. There is the amount by

which the median localised angle in the distractor-present data deviates from

the distractor-absent case, and there is also the widening of the statistical

distribution of these results when the distractor is introduced. The more

robust the onset detector is against the distractor signal, the smaller this

widening will be, and the less visible the effect of the distractor will be.
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Figure 5.17.  Sum histogram representation of the five stimuli.

Left: without central distractor.  Centre: with central distractor.  Right:

with central distractor, onset times randomised.  For clarity, the axes

have been rotated and the time axis now increases upwards, in the same

direction as Figures 5.12–5.16. The 60° left position is marked by a cross

on each graph.
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Figure 5.18.  Hit count representation of the five stimuli.

Left: without central distractor.  Centre: with central distractor.  Right:

with central distractor, onset times randomised.  The time axis increases

upwards, in the same direction as Figures 5.12–5.16.  The raw data cannot

be displayed at this scale, so the hit count quartile and median lines

[black] are supplemented with octile lines [grey].
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For all sources except the piano, the degree of localisation impairment that

the distractor causes is minimal, as the sources continue to be clearly

localisable. Of these sources, the melodica is most affected: this sensitivity is

caused by the sparseness of detected onsets within the stimulus. In the

distractor-present case, 28% of the detected onsets are caused by the presence

of the noise. However, the false detections contribute only a 5° detraction

away from the distractor-absent source location. It is likely that many of the

additional onsets in the distractor-present case occur at times when the

source dominates the distractor, and can be attributed to the statistical

influence of the noise on the audio signal.

Of these examples, only the piano signal highlights a problem with the

onset detector. This excerpt is a good illustration of a case where the onset

detector would require variable sensitivity in order to perform its intended

task. The grand piano is a challenge to onset detection and localisation

algorithms, as it is a physically wide instrument, has a complex radiation

pattern, and possesses sudden and chaotic fluctuations in level across

different frequency bands owing to sympathetic resonances in strings and the

soundboard. A high rate of onsets is detected: an average of one every 140ms

in the distractor-absent case, and one every 85ms in the distractor-present

cases. Many of these onsets will occur during times when room reflections,

and distracting noise, dominate. The location of the grand piano can be seen

in all examples in Figure 5.18 as a statistical shadow on the left-hand side of

the image. While the onset detector’s sensitivity to different stimuli remains

fixed, its ability to localise a piano effectively cannot be assured.

It is acknowledged that any future development of this algorithm must

include a method for varying the onset detector’s sensitivity automatically.

The fixed-threshold onset detector shows considerable versatility for a wide

range of stimuli, even when the problems with the piano excerpt are

considered. Excepting these, onset-based localisation with the distractor

present compares very well with the distractor-free case.
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5.4 Secondary spatial attributes

A principal aim of this project, which distinguishes this method of spatial

analysis from a large majority of others, is that it should be compatible with

the extraction of secondary spatial attributes from the binaural stream. In this

section, the response of the localisation algorithm to two controllable

secondary spatial attributes will be examined. The two chosen attributes,

source width and source distance, are manipulated by changing the position

of orientation of sound sources within the recording environment. In other

words, physically-based changes are applied to the actual source width and

distance in these experiments, as opposed to perceptually-based changes,

which could be invoked by processing a stimulus in certain ways (for example,

[Neher 2004]). It is assumed that unidimensional physical changes in

secondary spatial attributes translate to unidimensional perceptual changes,

so that these investigations may be considered an investigation into the

analyser’s ability to extract spatial information in a way that is peceptually

relevant.

5.4.1 Manipulation of actual source width

To investigate the effects of source width changes, four separate recordings

have been analysed. Two of these feature a grand piano, centrally positioned,

at two metres’ distance. One performance was recorded with the piano

oriented sideways-on (its usual orientation for a recital), and the other with

the piano in keys-on orientation. The two remaining recordings are of the

same musical passage replayed through a floor-standing loudspeaker,

oriented horizontally and then vertically. (This pre-recorded passage was

performed on an upright piano in a small practice room, using a cardioid

microphone at a distance of approximately two feet.) The loudspeaker output

was aligned to be of similar loudness in the room to the grand piano.

Mechanical drawings of the four orientations, referred to respectively as

‘piano wide’, ‘piano narrow’, ‘loudspeaker wide’, and ‘loudspeaker narrow’,

are shown in Figure 5.19.
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(sounding widths)

loudspeaker
placed on a table

(sounding width)
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Figure 5.19.  Mechanical drawing, with approximate dimensions, of the

four recording set-ups used to obtain the different width stimuli.

Approximate angular widths for the stimuli are also given. PW = piano

wide; PN = piano narrow; LW = loudspeaker wide; LN = loudspeaker

narrow.

The following differences might be observed in the output histogram data

as the source width is varied:

• The narrower the source, the easier it is to localise. This is because

localisation accuracy increases with interaural coherence [Hartmann

1983], while auditory source width varies inversely with interaural

coherence [Hidaka et al. 1995]. Thus, an inverse correlation should

be observed between source width and maximum peak truth value,

and also between source width and average peak truth value during

onset.

• A piano is a physically wide instrument, and its width should be

apparent from the output histogram. This width will be manifested

during, and slightly after, the onset region. It will be visible in two

ways: as a blurring of the histogram, and also as angular fluctuations

with a period of perhaps 10–125Hz: approximately 8–100ms (see

Mason’s IACCFF, Section 2.2.2). These phenomena will be almost

entirely lacking from the loudspeaker stimuli.
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In Section 5.2.2, it was demonstrated that the onset detector does not work

reliably on the piano stimulus. Therefore, an isolated middle C has been taken

from the beginning of each performance as an example. Processed data can be

seen in Figures 5.20–5.23. These figures introduce a slightly different method

of representing the histogram data, which allows the width of its distribution

to be seen more clearly. The middle graph of each figure shows the median

[centroid] and lower and upper quartiles of the histogram data. Thus the sum

of histogram truth values between two adjacent lines on this graph equals

one-quarter of the sum across the whole segment. In these examples, the peak

truth values are shown on a numbered scale: this eases the comparison of the

four sets of results.
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Figure 5.20.  Localisation data for middle C, ‘piano wide’ orientation. In

this example, the sound source subtended 45° of the field of audition. 
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Figure 5.21.  Localisation data for middle C, ‘piano narrow’ orientation. In

this example, the sound source subtended 37° of the field of audition.
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Figure 5.22.  Localisation data for middle C, ‘loudspeaker wide’

orientation.  In this example, the sound source subtended 13° of the field

of audition.
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Figure 5.23.  Localisation data for middle C, ‘loudspeaker narrow’

orientation.  In this example, the sound source subtended 8° of the field

of audition.
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This data set is clearly limited in scope: only one note on one class of

musical instrument has been tested. However, there are some striking features

of the data which demonstrate that the localisation algorithm may be highly

suited to extracting source width information. What is most apparent about

these results is the strong negative correlation between the source width and

the maximum truth value shown within 20ms of onset. The maximum peak

value itself is very vulnerable to noise and can be very short-lived, so a more

robust statistical measure, the 90th percentile, is employed to relate to the

peak value. This is given as the truth value that 10% of peak values within

20ms of the detected onset must equal or exceed. The 90th percentile values

are given in Table 5.1.

Stimulus

Piano wide

Piano narrow

Loudspeaker wide

Loudspeaker narrow

0.62

0.70

0.92

1.13

0.49

0.63

0.81

0.99

Maximum peak
within 20ms

90th percentile peak
within 20ms

Actual source
width / degrees

45

37

13

8

Table 5.1.  Maximum and 90th percentile peaks of the four width stimuli.

A formula that roughly relates angular width to 90th percentile truth

value for the four piano notes is:

φ =
7.5

A2.5
(5.1)

where φ is the source width in degrees, and A is the 90th percentile peak truth

value. However, other sources, at other angles, will exhibit different

characteristics. The peak values observed in Figures 5.3 and 5.6, for example,

are not consistent with this rule. Unfortunately, obtaining controllable stimuli

to extend this investigation may prove difficult. It is not trivial to contrive

controlled stimuli of different widths for any instrument except one that is

physically wide in one dimension and narrow in another (such an instrument

may have its angular width continuously adjusted by rotating it). This problem

could be overcome by processing the audio to create perceptually

unidimensional stimuli using the methods formulated by Neher [2004], but

the risk of this approach is that any width-detecting algorithm that is

formulated may end up simply reverse-engineering the processing, and might

not extend validly to other stimuli.
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The second suggested approach for extracting source width, by inferring it

from the distribution of output histogram data, seems less promising from

these results. A difference can be distinguished in the spread of the histograms

from the piano and those from the loudspeaker, but this difference is subtle

compared with the peak truth value cue, and it is not possible to distinguish

the sounds in any more detail. Moreover, it has been observed throughout this

chapter that histograms generated from sources placed near the aural axis

appear spread between the angle of localisation and the aural axis. It is

unlikely that a small increase in the distribution of data that is already widely

scattered could be detected reliably and repeatedly.

5.4.2 Manipulation of actual source distance

There are a number of possible ways of estimating source distance in a

reverberant room. A method based on the inverse pressure law, that makes

informed judgements regarding the loudness of each source, will not be

particularly reliable unless the listener or analyser is already familiar with the

source.

Conveniently, the source distance attribute may be extracted more reliably

from using spatial features of the sound sources. All of the following cues are

source distance indicators that could be extracted by the spatial analyser:

• The direct-to-reverberant sound ratio. This may be determined by

comparing the loudness of the direct sound (during onset) to the

loudness when the peak truth value function has fallen and

stabilised, usually after 50–100ms.

• The angle subtended by a source decreases as its distance increases,

so its apparent width is an additional distance cue. This change in

width is augmented by the deviation of ITD and IID cues from their

diffuse-field values when the source becomes closer than about three

metres (see Section 4.3.1 for examples of the manifestation of this

effect, and Section 4.4.1 for the method used to correct it for diffuse-

field conditions). This proximity should cause a stronger reduction in

the peak truth value function. Therefore, the method for determining

source width is also applicable to estimating distance.

• The onset time of a stimulus will be longer at small distances. This is

a manifestation of the increased direct-to-reverberant sound ratio,

and also occurs because, in certain circumstances, the act of bringing

source and listener closer together removes them away from the
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walls and into the centre of the room.

Owing to the simplicity of producing stimuli at various source distances, a

large number have been recorded for analysis. Two instruments are included

in the data set: a clarinet note, and a single tamborim hit recorded at six

different distances (50cm, 1m, 1.5m, 2m, 4m, 6m) and at three different lateral

angles (0°, 30° left and 90° left). This makes 36 stimuli: rather too many to

illustrate separately, so the data has been processed according to three

metrics, each based on one of the hypotheses above, and presented as metric-

versus-distance graphs.

The first metric is the 90th percentile peak truth value function. Because

this value was discovered to correlate inversely with source width for the piano

example in the previous section, it should also correlate directly with source

distance. Thus a distant source should have a larger 90th percentile peak truth

value than the same source recorded at proximity.

The second metric, called ‘direct/reverberant’, is the maximum value of the

sum of loudness coefficients within 20ms after the detected onset, divided by

the average sum of loudness coefficients between 80ms and 100ms after onset.

This time constant gives the clarinet note a chance to decay. The metric

provides a rough indication of direct-to-reverberant sound ratio.

The final metric, called ‘onset sustain’, is the last time in the region 50ms

after onset for which the peak histogram truth value function is sustained at or

above its 0–20ms 90th percentile truth value. This metric is another symptom

of the direct-to-reverberant ratio, and it should vary inversely with distance.

This data is presented in Figure 5.24. In these examples, only the first

detected onset has been used for calculation. The direct/reverberant metric is

particularly promising, as it behaves expectedly for the tamborim stimulus:

there is a clear inverse relationship between the metric and distance. However,

this relationship does not hold for the clarinet stimulus. This is because the

direct sound from the clarinet is still increasing in level 80ms after onset. This

explains why the clarinet’s direct-to-reverberant metric is maintained around

unity, implying that the reverberant sound is louder than the direct sound.

What is being measured is the ratio of initial direct sound to late direct sound

plus reverberant sound. To provide good direct-to-reverberant data, the

auditory offset should be analysed rather than the onset.

The two remaining metrics exhibit random characteristics, irrespective of

the input stimulus. This may be expected for the 90th percentile truth value

data. Neither the tamborim nor the clarinet possess significant physical width,
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so a source width metric might not be expected to change with distance. It

may still prove effective for wide stimuli.

Disappointingly, the onset sustain metric does not appear to be suited to

source distance analysis. For the clarinet stimulus, the 50ms ceiling of the

calculating algorithm is reached too frequently for this metric to be useful: the

direct sound is still gaining strength after this time, so the peak truth value

function continues to increase. A small negative correlation can be seen for

the tamborim onset sustain data, but the data has neither the dynamic range

nor the strength of correlation of the direct-to-reverberant data.

From these results, it appears that the most effective strategy for estimating

the source distance from input data would be to complement the auditory

onset detector with an offset detector. and to apply the direct/reverberant

ratio metric to auditory offsets.

Estimating the direct/reverberant ratio is a practicable method for

determining source distance. This ratio is known to be an important distance

cue in human audition [von Békésy 1960; Bronkhurst and Houtgast 1999]. As

the direct-to-reverberant ratio data in Figure 5.24 falls with increasing

distance and approaches a practical asymptote at around 1.0, it demonstrates

consistency with the auditory horizon phenomenon [Mershon and Bowers

1979; Bronkhurst and Houtgast 1999]. This states that beyond a certain

distance, the value of which is a function of the room radius, changes of actual

source distance have a greatly diminished influence on the perceived source

distance.

An Onset-Guided Spatial Analyser for Binaural Audio



5  Investigation          149       

0.5 1 1.5 2 4 6

90th percentile truth value
1.0

0.5

0.0
0.5 1 1.5 2 4 6 0.5 1 1.5 2 4 6

0.5 1 1.5 2 4 6 0.5 1 1.5 2 4 6 0.5 1 1.5 2 4 6

0.5 1 1.5 2 4 6 0.5 1 1.5 2 4 6 0.5 1 1.5 2 4 6

direct/reverberant ratio (linear scale)

onset sustain / milliseconds

1.0

0.5

0.0

1.0

0.5

0.0

8

4

0

50

25

0

8

4

0

8

4

0

50

25

0

50

25

0

source distance / metres

source distance / metres

source distance / metres

30° left 0°90° left

30° left 0°90° left

30° left 0°90° left

clarinet
tamborim

clarinet
tamborim

clarinet
tamborim

1 1 1

Figure 5.24.  Responses of three different proposed source distance

metrics to varying source distance. Tamborim and clarinet stimuli.
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5.5 Computational demand

An aim of this project is that a real-time implementation of the spatial analyser

should be within reach. In order to examine the possibility of a real-time

implementation of these algorithms, a table is presented in Table 5.2 of their

computational demands in MFLOPS (millions of floating-point operations per

second).

Filter banks

Rectification, filtering, decimation

Computational demand / MFLOPS

Total for input stage

Task

Onset detector

ITD detection

IID detection

Lookup, normalisation, summing

Total for localisation algorithm

85.2

21.2

106.4

14.8

Loudness calculation

Grand total

69.8

8.1

3.2

42.9

124.1

245.3

(50.2)

(8.1)

(3.2)

(43.9)

(104.5)

(225.7)

Table 5.2.  Computational demand of the prototype MATLAB algorithms.

MFLOPS data in brackets is for an alternative version of the ITD-

extracting algorithm that stores all component correlograms (see the end

of Section 4.3.4 for details). However, the memory-swapping overheads

of this implementation causes it to run more slowly under MATLAB than

the original one.

These data were obtained by applying MATLAB’s flops command

[Mathworks 2004] to each stage of processing of a five-second excerpt of piano

music, and dividing all the results by five. For reasons that will be explained,

this generates only an approximate indication of the computational

requirements of these algorithms, so the results should be interpreted

carefully.
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The overall computational demand of all prototype algorithms is seen to be

approximately 250 MFLOPS. This falls within the published specification of

many of the more recent designs of digital signal processor, including the

SHARC and C55x processors [Analog Devices 2005; Texas Instruments 2005],

both of which have published performance data in excess of 500 MFLOPS.

However, an algorithm’s load in MFLOPS is not a complete indication of its

compatibility with a particular processor. Some operations, such as the

repeated multiply-accumulate cycles executed during filtering, can usually be

performed on a processor more rapidly than more complicated conditional

processing employed, for example, in the onset detector. Although they also

take time to perform, memory storage and retrieval are not usually counted in

floating-point operation calculations. Furthermore, some arithmetical

instructions are not accounted for at all in Table 5.2. (The MATLAB

documentation for the flops instruction states that ‘It is not feasible to count

all floating point operations, but most of the important ones are counted’.

Note, however, that documentation for flops is no longer published as the

instruction is obsolete in more recent versions of MATLAB.)

It is important to observe that the algorithms in Table 5.2 generate onset

and localisation data, but do not process these in order to make sense of them.

However, any such interpretation is expected to be far less demanding than

any of those that are currently listed.

A real-time version of the spatial analyser, working on a stream of data,

would be a little simpler than this prototype. For example, it would not have to

compensate for the limited availability of audio data at the start and the end of

the data arrays, as this algorithm does. There are other opportunities for the

algorithms to be improved. For example, the filter bank is the most demanding

single processing stage, but even the low-frequency filters operate at 44.1kHz.

It is probable that a multi-rate approach would run considerably faster.

Because this project does not extend to the formulation of a real-time

algorithm, this level of optimisation has not been considered.

In order to comment further on the possibility of a real-time

implementation, it would be necessary to build a more precise profile of the

run-time code, of its demands on memory, and of the kind of instructions that

it would employ. Again, an instruction-level profile is beyond the scope of this

thesis, but the results in Table 5.2 show that the requirements of the spatial

analyser are within the capabilities of current technology.
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5.6 Summary

The four experiments in this chapter have demonstrated that the spatial

analyser satisfies a number of the objectives of this project. The first two

experiments demonstrate that the spatial analyser can localise a variety of

sources, and can usually determine the source angle to within 10°. This

precision is comparable to human localisation performance. Larger

inaccuracies in localisation are attributed to late onset detection or false

detection of strong early reflections as separate onsets. 

Currently, sources with very short auditory onsets are most vulnerable to

mislocalisation. However, localisation ability is improved by the presence of

the onset detector. The assumptions made in formulating the localisation

algorithm and the ITD and IID look-up table databases were not over-

generous, and have had little effect on localisation accuracy.

Two persistent phenomena that affect the output histograms are the drift of

the localisation histogram away from the centre of the field of audition the

longer onset persists, and the widening and blurring of the edges of the

histogram for source angles near the aural axis. These have been attributed,

respectively, to the effect of early lateral reflections, and to properties inherent

in the trigonometry of spatial hearing.

Problems noted in the localisation of extended stimuli are a result of a

high-rate of onset detection: the observed ‘high rate’ is between 5 and 10

onsets per second. Stimuli with fast attack and decay times are affected, and

the phenomenon causes spurious onsets to be analysed. This has a

detrimental effect on localisation performance. This may be ameliorated by

making a number of small improvements to the onset detector. These include

the implementation of a masking model that would influence longer-term

behaviour of the onset detector, and the implementation of a method for

automatically controlling the sensitivity of the onset detection algorithm

according to the amount of activity detected within the input signal. These

modifications will make the onset detector respond with greater consistency

and intelligence to more impulsive sources.

The adaptability of the spatial analyser for secondary spatial attributes has

been investigated briefly, with positive results. For the four piano examples

tested, the relationship between auditory source width and 90th percentile

peak truth value was strikingly inversely proportional, and a simple formula

could be used fit the 90th percentile results to the actual width of the source.
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Source distance is a more difficult attribute to extract, and of the three

metrics that were tested, the direct/reverberant ratio works most satisfactorily.

This metric compares integrated loudness measurements at times that are

dictated by the spatial analyser. The direct/reverberant ratio is also known to

be an important distance cue in human audition. To apply this metric to all

sound sources, an offset detector would have to be built to complement the

onset detector.

The current implementation of the spatial analyser demands slightly fewer

than 250 million floating-point operations per second. It is not possible to

comment on the compatability of the prototype routines with any particular

digital signal processing hardware without analysing both of these in far more

detail, but the spatial analyser’s requirements appear to fall firmly within the

capabilities of existing technology.
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6 CONCLUSION

This conclusion presents a chapter-by-chapter summary of the thesis, drawing

out the main conclusions. It ends with suggestions for the continued

development of the spatial analyser, and a consideration of the contributions

that this thesis has made to the field of spatial auditory analysis.

This research question, proposed in Chapter 1, asked how a spatial

attribute extractor may best be realised that suits the requirements of

broadcast monitoring. This has been answered by developing the spatial

analyser. Its component algorithms meet the requirements of the broadcast

monitoring application, and it can localise sound sources and extract

secondary spatial attributes.

The closing sections of this chapter describe ways in which the versatility of

this spatial analyser can be improved, and propose strategies for developing

the secondary spatial attribute extraction mechanisms that were created in

this thesis.

6.1 Summary of Chapter 1:

Introduction

The aim of this project was to design and present a system, called the spatial

analyser, that can extract fluctuating spatial attributes from binaural data.

These spatial attributes include the most basic auditory scene information —

the lateral position of the sound source — and secondary attributes such as

apparent source width and distance.

Principal requirements for this system were derived from its intended

application in broadcast monitoring technology, and from the need for

perceptually accurate spatial attribute extraction. The first of these two

applications imposed criteria that are concerned largely with implementation.

Processing algorithms must be compatible with streamed data, produce an

output with the minimum of delay (less than 33ms) and, to make a real-time

implementation practical, be computationally efficient. The second of these

applications requires that wherever it is possible, only psychoacoustically-

valid algorithms should be used.

In addition to these restrictions, the output from the system must be
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precise and reliable enough to be useful to an engineer when the source

material cannot be heard.

Input audio data is presented in binaural format to achieve the aim of

psychoacoustic validity. This requires the algorithm to work by finding and

interpreting fluctuations of interaural time and intensity differences — the

same cues that are available to the human auditory system. Representation in

any other audio format would necessitate a departure from these fundamental

psychoacoustic cues, and thus from a perceptually valid representation.

Unfortunately, the binaural format has inherent limitations. When only two

ear signals are available for analysis, it is not possible to discriminate reliably

between sounds arriving from the front and rear hemispheres, or between

elevated sources and those on the horizontal plane. Humans can accomplish

this task for two reasons. Firstly, a listener learns the transfer functions of his

or her head in response to sounds from different directions. A computer can

mimic this task, but algorithms that attempt this are limited to those

individual binaural recording heads whose characteristics they have ‘learned’.

Secondly, even the most sophisticated algorithms cannot perform this task

reliably, because human listeners can interact with environments in a way that

a computer cannot. Even without visual cues, a human listener can use head

movements and other motion-related cues to localise natural sound sources

precisely. The drawback of the binaural format is that only one-dimensional

localisation (lateralisation) is possible. Every source, including elevated and

rear-hemisphere sources, are essentially folded onto the frontal semicircle of

the horizontal plane (see Chapter 4.2).

The Zurek model (see Chapter 1.4) is applied as a framework, both for the

implementation of the spatial analyser and the chapter divisions of this thesis.

Zurek’s model requires a dedicated onset detector to make sense of spatial

information. Its layout is thus dictated by the precedence effect. This

phenomenon was examined in Chapter 2.

6.1.1 Conclusions from Chapter 1

In order to meet the requirements of broadcast monitoring, the spatial

analyser must be compatible with streaming audio, and the delay between

input and output should be less than the period of one video frame (33ms).

The analyser should also work as efficiently as possible, so that a real-time

implementation is practicable. The Zurek model provides the most suitable

starting point for the design of such an analyser.
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Designing an analyser to take binaural data as its input will limit its

capabilities to one spatial dimension, but will allow a psychophysically

motivated approach to be taken.

6.2 Summary of Chapter 2:

Early reflections and spatial impression

The precedence effect is a psychoacoustic inhibition mechanism that affects

the perception of sound immediately after the onset of an auditory event. This

enables a listener to locate a sound source in a room without being distracted

by early reflections, which arrive from different angles. Within 2ms after a fast

onset, the precedence effect diminishes both the perceived loudness of further

sound energy and the weighting applied to spatial information. Sound arriving

at the ears during this period of sensory inhibition is perceived as being

spatially fused with the earlier onset.

The period of strongest inhibition lasts approximately 1ms, and the

recovery time depends on the amplitude envelope of the input stimulus. The

human auditory system regains its acuity within about 10ms when clicks and

other short transients are presented. If the sound source is sustained or slow

to decay, recovery from the precedence effect can take more than 50ms.

Early reflections cause decorrelation of the two ear signals. Lateral

reflections — for example, those from the side walls of a room — cause greater

decorrelation than the centrally-positioned first-order reflections from the

front wall, back wall, floor and ceiling. Because many of these arrive within the

regime of the precedence effect, they are perceptually fused with the direct

sound and generate a sense of source breadth.

A number of objective measures attempt to quantify this broadening effect.

Most of these rely on the analysis of room impulse responses. In three early

measures, the Lf , LFE , and IACCF, the energy of early reflections up to 80ms is

weighted according to angle of incidence, integrated, and then compared with

the total unweighted energy of the impulse and its reflections. A cosine or

cosine-squared weighting law favours lateral reflections over frontal

reflections.

Later-arriving sound energy is not generally perceived as fusing with the

direct sound, but is heard as an environmental effect that is termed ‘listener

envelopment’ (LEV), so a number of similar measures exist for integrating the

later-arriving reflections of an impulse response with directional weighting.
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Impulse responses differ from more natural sounds because they possess

very quick attack and decay envelopes, and are not sustained. Perceived

spatial impression is dependent on factors such as reverberation time, the

speed of a music or speech stimulus, and amplitude envelope characteristics

of sound sources. Hence, little can be learned from impulse response analysis

that can be applied to the human auditory system without heavy

interpretation. Similarly, computational impulse response analysis techniques

cannot be applied to natural sounds without extensive modification.

At least two attempts have been made to create more sophisticated

measures of auditory source width, based on instrumental sounds and

continuous white noise instead of impulse responses. Currently, these suffer

from a subset of the deficiencies of impulse response testing: the values

obtained from these metrics depend heavily on the characteristics of the

source material used.

Griesinger has extended the Zurek model. The extra requirements of the

Griesinger model include an offset detector, and a method of extracting

background spatial impression (BSI). BSI is Griesinger’s terminology, but is

possibly equivalent to listener envelopment.

A localisation algorithm has been proposed by Faller and Merimaa that

obtains its cues entirely from interaural cross-correlation data. The

computational simplicity of this approach is attractive, because onset

information is obtained from localisation data with very little extra

computation. However, the realisation of an onset detector that uses this

paradigm, and can adapt without human intervention to different source

stimuli, is still as formidable a target as a level-based adaptive design.

Furthermore, this mechanism cannot work under monaural conditions

without a separate level-based auditory onset detector. However, Faller and

Merimaa’s approach is worthy of future investigation as an additional onset

cue.

6.2.1 Conclusions from Chapter 2

The precedence effect exerts a strong influence on spatial perception. A

computer simulation of the precedence effect is therefore a required

component of the spatial analyser. This necessitates an auditory onset

detector, with sensitivity to different types of auditory event.

Griesinger’s theoretical model of spatial perception presents a number of

ways of extending Zurek’s model to extract secondary spatial attributes. Faller
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and Merimaa’s model presents an interesting approach that could serve as an

additional — but not alternative — paradigm.

6.3 Summary of Chapter 3:

Onset detection algorithm

An auditory onset is usually defined as beginning of an auditory event. This

definition is somewhat simplistic, and a clearer definition was required so that

an onset detection algorithm could be formed. Therefore the term auditory

onset was redefined, for the purposes of this thesis, as the period of time for

which directly-arriving sound dominates reflected energy. During an auditory

onset, the sound arriving at a listener contains sufficient cues for correct

localisation.

The revised definition of auditory onset is compatible with sound

localisation and the precedence effect, and means that an onset now signifies

a region of time rather than an instant. The detection of the auditory onset at

any moment during this region will be sufficient for successful source

localisation. The new onset detector that is formulated for this thesis can

therefore be assessed according to the precision and consistency of its

localisation performance.

This onset detection algorithm combines two different onset metrics. These

are calculated individually for the 24 critical bands of each ear signal. The first

metric employs a linear regression model. This determines the logarithmic

rate of ascent or descent of the input signal. The second effectively uses a non-

linear band-pass filter to remove low-frequency changes and short-term

fluctuations. The resulting streams of data are thinned and combined into one

function of time using fuzzy logic methods and a cascaded ‘hold-and-decay’

implementation of the precedence effect. This output function’s value equals

unity at the beginning of a detected onset, and zero at all other times.

6.3.1 Conclusions from Chapter 3

Auditory onsets need to be detected at intervals of 100ms or more to allow the

extraction of secondary spatial attributes. An onset occurs whenever direct

sound energy dominates over reflected energy. This usually coincides with a

rise in input signal level.

No existing algorithm could be found that is both highly sensitive to

auditory onsets and robust against noise and spurious input level fluctuations,

while maintaining the relatively low detection rate required by spatial
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attribute extraction. The approach formulated in this chapter fulfils these

requirements.

6.4 Summary of Chapter 4:

Localisation algorithm

The localisation algorithm finds the instantaneous ITD and IID of each critical

band of the binaural input signal at a rate of 2.45kHz. This data is mapped

onto an output histogram: a simple map of truth value against lateral angle,

with a resolution of one degree. The higher the truth value for a particular

lateral angle, the higher the likelihood of localisation to that angle. The ITD-to-

angle and IID-to-angle conversion routines use look-up tables derived from a

library of KEMAR head-related impulse responses.

This localisation algorithm is divided into two components. The generative

algorithms build the look-up tables for interaural cue conversion. The

analytical algorithm is the running spatial analyser. Effort has been invested in

simplifying and optimising the component routines of the analytical

algorithm, as this must run in real time.

Particular attention has been focused on speeding up the ITD extraction

routine, which is based on the interaural cross-correlation function. This is

usually computationally intensive, but by reducing the data rate at the input to

this function and interpolating the output carefully, high-accuracy localisation

is possible with a minimum of data processing.

Each set of ITD and IID data from the 24 critical bands are integrated

carefully to reduce the output rate to 2.45kHz. Loudness weighting is applied

to each histogram. A reduction in level of 10 phons within a critical band

halves its weighting coefficient. This weighting is combined with a novel cross-

weighting process that accounts for the relative sensitivity of interaural time

and level differences across the frequency spectrum.
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6.4.1 Conclusions from Chapter 4

ITD and IID both play important roles in sound localisation. Very few

localisation algorithms are sensitive to IIDs, because they cannot easily be

converted to localisation data or combined with ITDs.

The two cues can be unified by windowing and integrating ITD and IID

data, converting them both to a histogram representation, and then cross-

weighting these according to frequency. The localisation algorithm can be

made more efficient by carefully reducing the sampling frequency of the input

data. 

6.5 Summary of Chapter 5:

Investigation

Four experiments were conducted, analysing more than one hundred different

binaural recordings in order to test the onset detector and localisation

algorithms thoroughly.

6.5.1 Localisation precision

The average deviation between actual and calculated source directions is 9°,

for a test set of 63 tamborim and square wave stimuli from source directions

spread evenly about the horizontal plane. Generally, the localisation error is

largest when the source is close to the aural axis. Whether the error pulls the

source towards the mid-line or the aural axis depends on the analysis method

used.

Some localisation anomalies as large as 18° were found in the data set. All

of these occurred near the aural axis. They are attributed to a combination of

late onset detection and very short instrumental onset times. An attempt to

correct these anomalies by making small automatic changes to the analysis

point, depending on the time at which the data was maximally correlated,

generated more anomalies than it removed. These anomalies were caused by

short-lived chaotic characteristics of the localisation data.

6.5.2 Onset detector performance

The onset detector was tested using a method that is based on the revised

definition of auditory onset presented in Chapter 3. This method was

formulated to test the onset detector’s ability to work with the localisation
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algorithm to locate complex sound sources. Five solo music and speech

excerpts were used for analysis, between 11 and 29 seconds long. Musical

stimuli were played on different instruments. The onset detector performed

well. For all sources except the piano, the difference between the average data

before and after the detected onset was striking.

To make the localisation task more difficult, coherent white noise was

added to each stimulus. This noise was amplitude-balanced according to the

rms level of the source signal. Onset detection and spatial analysis were then

performed again. As a control, the spatial analyser was run a third time: this

time, the onset detector was disabled, and onset times were randomised. All

sources except the piano showed considerable robustness to the noise, and

the control signal verified the effectiveness of onset detection. The excerpts

with the fewest detected onsets showed the most effective rejection of the

distracting noise.

Unfortunately, onset detection did not assist in the localisation of the

piano. This instrument has one of the highest average rates of detected onsets

in the experiment: 204 in 24 seconds, 31 of which were introduced when the

noise signal was added. For the piano stimulus, no significant difference could

be detected between the onset-guided localisation data and the randomised-

onset data.

6.5.3 Secondary spatial attributes: source width

Existing source width metrics are based on the value of the interaural cross-

correlation function (IACCF) or on fluctuations in interaural time difference.

By extending this rule, an attempt is made to extract source width information

from four different recordings of a piano note. The piano was positioned

directly in front of the recording head. Its width was controlled by rotating it

by 90° from a sideways-on to a keyboard-on orientation, and then by replacing

the piano with a loudspeaker, replaying a prior performance with the

loudspeaker in two orientations.

By using the peak truth value function of the histogram, an accurate

ranking of the four stimuli was achieved. The peak truth value appears to be a

good indicator of auditory source width. It is representative of the interaural

coherence of the input signal, and therefore is analogous to the interaural

cross-correlation function.

An inverse power formula models the relationship between peak truth

value and width in degrees fairly closely. Without alteration, however, this
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formula is not expected to hold for other instrumental sources, and would not

model the same source moved to another listening position.

6.5.4 Secondary spatial attributes: source distance

Three methods were proposed for extracting source distance, each of which

corresponded to a theoretically-valid distance cue. These metrics were

calculated for a library of 36 stimuli: a clarinet and a tamborim recorded at six

distances and three lateral angles.

The direct-to-reverberant ratio was found to correlate best with source

distance, particularly for the tamborim stimulus. However, the clarinet

stimulus did not produce useful results. This is because its sound level was still

increasing several milliseconds after onset. It is hypothesised that source

distance can be extracted reliably only from the offset of an auditory event.

Of the remaining distance metrics, peak truth value performed least well. In

the previous experiment, this measure was found to vary predictably against

source width. It is likely that peak truth value performed poorly as a distance

indicator because the tamborim and clarinet are both physically narrow sound

sources.

The third proposed metric, ‘onset sustain’, was based on the length of time

for which the truth value stays above a certain threshold after onset. A

correlation was found between source distance and onset sustain for the

tamborim, but this metric correlated less strongly with actual source distance

than the direct-to-reverberant ratio.

Although the direct-to-reverberant ratio metric works as a distance

indicator in this implementation, nothing can be inferred about the manner in

which the human auditory system determines apparent source distance. This

would have to be ascertained using a formal listening experiment.

6.5.5 Computational demand

A real-time version of the MATLAB prototype of the spatial analyser would

demand 250 MFLOPS in order to work in real time. Approximately one third of

this demand is required by the band-pass filter, and about a quarter is used by

the interaural cross-correlation algorithm. It would be possible to code more

efficient implementations of both of these algorithms to reduce the required

processing power, but the demands of the spatial analyser already fall

comfortably within the published performance characteristics of

commercially available digital signal processors.
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These findings are reassuring, but they are not a complete indication of the

spatial analyser’s real-time compatibility with existing processors. The

demand of these algorithms cannot be completely expressed as a value in

MFLOPS, as their speed also depends on their complexity. Furthermore,

MATLAB does not count many processes as floating-point operations, although

they occupy processor time.

6.5.6 Conclusions from Chapter 5

The localisation algorithm performs well, and is particularly accurate for

source positions in the front quadrant of the field of audition. This validates

the histogram approach for source localisation. No clear compatibility

problems are encountered when analysing stimuli recorded with a Cortex MK2

head using a database based on data recorded with a KEMAR head.

The onset detector is compatible with a variety of source signals, and is

largely resistant to the effects of spurious onsets. However, while successful

localisation of the piano was possible, the rate of onset detection was too high,

and problems ensued during analysis. This could be solved by altering the

design of the detector, so that it changes its onset thresholds dynamically.

Peak truth value performs as an excellent source width metric for the four

piano stimuli. The direct-to-reverberant ratio, applied to the offset of an

auditory event, is the most successful source distance metric of the three that

were tested. An offset detector will need to be added to the spatial analyser

before source distance can be estimated for non-impulsive stimuli.

The prototype implementation of the spatial analyser would demand

250 MFLOPS to run in real-time. This is quite feasible on modern processors,

but owing to the limitations of the MFLOPS measurement, more work would

need to be done either to prove this claim entirely satisfactorily, or to achieve a

real-time implementation of the spatial analyser on a single processor.

6.6 Continuing and extending the research project

The spatial analyser has been demonstrated to support onset-guided auditory

event localisation, and evidence has been presented to prove its compatibility

with secondary spatial attribute extraction. However, some system

modifications have already been proposed. These would improve the

performance of the spatial analyser in its current form. There are also a

number of extensions that could be used to develop the model further.
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6.6.1 Improving existing functionality

The most important proposed improvement is to the onset detection

algorithm, to allow it to adapt the decision maker’s parameters continuously

to maintain the rate of detected onsets within predefined minimum and

maximum limits. This has already been attempted informally (see Section

5.3.1), but will need to be tested and developed further.

Another useful enhancement to the onset detection could cause it to mark

auditory onsets as regions in time rather than as singular points. The

localisation system could then integrate spatial information over the entire

duration of an auditory onset using a precedence effect model, and produce a

smoother output. This is a complicated refinement, as it would entail a more

advanced precedence effect model.

It is clear that the existing implementation of the precedence effect is

rather simplistic, and does not imitate the human echo suppression

mechanisms accurately. This could be improved by using a more elaborate

algorithm. Depending on the design of the variable-threshold modifications to

the onset detector, this refinement may require considerable changes to be

made so that the detector continues to detect onsets relatively infrequently.

There is a clear need for an offset detector, which will complement the

onset detector. It is hypothesised that this will enable precise source distance

and listener envelopment (LEV) extraction. This hypothesis can be tested

experimentally, but only when a functional offset detector has been built.

6.6.2 Adding new functionality

A fundamental limitation of the spatial analyser is that it is confined to two

spatial dimensions: lateral angle and source distance. This is caused by the use

of the binaural recording format (see Chapter 4.2). However, if the model is

extended by two audio channels, to include another horizontal head position,

the analyser’s scope will improve considerably. It will then be possible to

differentiate between frontal and rear sources, and to ascertain their angles of

elevation. (This system could still not differentiate between dipped sources

and elevated sources. This would require a third head position.) Changing the

analyser in this way would necessitate a more sophisticated internal

representation of auditory space within the model, and a more elaborate

technique would be needed to display the output data. The lateral angle

histogram can represent only one dimension of space, and would no longer be
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sufficient.

Unfortunately, adding two audio channels presents several disadvantages.

It approximately doubles the signal processing demand, and is a departure

from the psychophysically-motivated simplicity of the two-channel spatial

analyser. However, these problems could be eliminated by enabling the spatial

analyser to select only one head position at any time, in order to correct front-

back or elevation ambiguities.

When these problems are overcome, there is still one more: the task of

acquiring test stimuli becomes problematic. Four-channel dummy heads have

been proposed before (for example, [Kahana et al. 1997]) but none is

commercially available. There are no recording techniques from which

binaural data can be convolved that can preserve the spatial separation of the

ears in the recording environment. Data for analysis could be convolved fairly

easily from a multichannel loudspeaker format, but analytical data would then

need to be synthesised instead of recorded, and this would affect the validity

of any conclusions made about the new analyser.

6.7 Specific contributions to the field of spatial auditory

analysis

A number of individual innovations have been necessary to create onset

detection and localisation algorithms that would be compatible with

secondary spatial attribute extraction.

The onset detector was formulated to solve the problem of secondary

spatial attribute analysis. This is a new problem, which consequently required

a special definition of auditory onset for the purposes of the spatial analyser.

The onset detector is a novel algorithm that combines two methods, each of

which has been adapted from a number of existing onset detectors. An original

model of the precedence effect prevents re-triggering at a rate that would

upset secondary spatial attribute extraction.

The localisation algorithm also contains several innovative aspects. Firstly,

the histogram conversion using specially-generated databases is unique.

Other existing models employ a set of modelling formulae or pre-programmed

neural networks to achieve a similar aim. The former technique oversimplifies

IID data, and the latter requires a library of training material more extensive

than Gardner and Martin’s HRTF database. Furthermore, the individual

decision-making mechanisms of a neural network are often impenetrable, and
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are uninformative about the characteristics of human audition.

The optimisation of the ITD computing algorithm for efficiency is a simple

combination of existing techniques — interaural cross-correlation and cubic

interpolation — in a novel way. This generates high-quality data using a small

fraction of the processing power that would otherwise be required.

To combine ITD and IID histograms across frequency bands, a unique set

of weighting coefficients have been formulated, based on inferences from a

survey of auditory literature. This duplex theory weighting is combined with

loudness weighting for each critical band. The algorithm that calculates

loudness coefficients has been created specifically for this system. The

combination of the two cross-weighting mechanisms works well for a variety

of stimuli.

6.7.1 Revisions to Zurek’s and Griesinger’s models

In the summary of Chapter 5, an extension was suggested to Zurek’s model

to include auditory offset detection, to assist in the extraction of source

distance. The proposed extension necessitates a more elaborate treatment of

auditory offsets than Griesinger’s model includes (see Section 2.3).

Griesinger’s model considers only the late-arriving energy that is perceived as

background spatial impression (BSI).

An approach that has been taken implicitly in this project also conflicts

with the workings of Griesinger’s model. While Griesinger assumes that two

separate mechanisms are responsible for determining source location and

secondary spatial attributes, they are integrated in this thesis: the same

mechanism has been used to determine both source location and secondary

spatial attributes. A proposed redrafting of Griesinger’s model, that includes

these findings and alternative approaches, is shown in Figure 6.1. This

paradigm would form the basis of future revisions to the spatial analyser.
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Figure 6.1.  A redrafting of Griesinger’s model, based on the conclusions

of this thesis.
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6.8 General contributions to the field of spatial auditory

analysis

The spatial analyser (SA) designed in this project is original in several ways. In

the field of secondary spatial attribute extraction, the SA is one of only two

existing algorithms that have demonstrated an ability to extract secondary

spatial attributes from arbitrary binaural signals. (The other is Mason’s

IACCFF: see Section 2.2.2.) Therefore, it is the only computer algorithm to

employ an onset detector and a precedence effect algorithm to assist in the

estimation of source width.

There are a number of localisation algorithms that set out to imitate the

human auditory system more accurately than the SA (these were considered in

Chapter 4). Currently, none of these are explicitly sensitive to auditory onsets.

Hence, unlike the SA, they cannot be expanded to consider secondary spatial

attributes.

With its ability to unite sensitivity to IIDs and ITDs, its awareness of

auditory onsets, and its implementation in a real-time compatible algorithm,

there are very few projects that are comparable to this spatial analyser. Its

workings, its design objectives, and its combination of techniques, are

therefore unique.
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A Key to flowcharts

A.1 Boxes

Standard (serial) process

Parallel process

Data stored in a look-up table

A sub-routine that generates parallel

A sub-routine: these are documented

(a serial process that is executed on
each element of parallel input data)

in their own flowcharts

data
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A.2 Flow symbols

Input data / Multi-dimensional input data

Output data

Standard flow between processes

(dotted lines are sometimes used for clarity,

Parallel data emerging from a serial process
and entering a parallel process

Data flowing between parallel processes

Parallel data channelled into a serial process

to denote less important processes in
complicated flowcharts)
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auditory analysis.’  Presented at the AES 116th Convention, Berlin, Germany,

May 2004, preprint 6068.

Supper, B., Brookes, T., and Rumsey, F.  ‘A new approach to detecting auditory

onsets within a binaural stream’.  Presented at the AES 114th Convention,

Amsterdam, The Netherlands, March 2003, preprint 5767.
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8 GLOSSARY

ASW

Auditory (or apparent) source width. A secondary spatial attribute (q.v.).

aural axis

An imaginary line that passes through both ears. When an external sound

source is positioned on the aural axis, it is placed either 90° left or 90° right.

binaural

A recording system designed for headphone reproduction. Binaural

recordings are made using a model of a human head and torso with

microphones inside its ears.

BSI

Background spatial impression: another term for auditory source width.

concha

The bowl-like portion of the outer ear that lies below the ear canal.

correlogram

A function of interaural piecewise product against interaural time

difference (this axis is usually symbolised by τ) and running time

(symbolised by t). The peak value of this function yields interaural time

difference on the τ axis.

cross-correlation

A measure of similarity of two signals, taken by measuring their piecewise

product at different time offsets, and normalising this data for signal level.

Two identical signals will have a cross-correlation of 1, whereas two

unrelated signals will have a cross-correlation close to zero.

dBFS

Decibel with respect to full-scale deflection. Hence, the largest signal that

can be represented by a digital system has an amplitude of 0dB.

echo suppression

The neurophysical inhibition of energy that arrives immediately after the

onset of a new auditory event. This complicated mechanism prevents early

reflections from disrupting localisation when listeners are placed in small

rooms.
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head related transfer function

A characteristic pattern of frequency-domain and phase distortion that the

outer ear and ear canal apply to a sound coming from a particular

direction.

head shadowing

The attenuation of sound waves at one ear, and their reinforcement at the

other, when a listener’s head behaves as an acoustic baffle. This only

happens at higher frequencies (greater than approximately 800Hz).

HRIR

Head-related impulse response. A binaural recording of an impulse

response coming from a certain direction.

HRTF

Head-related transfer function (q.v.).

IACCF

Interaural cross-correlation function.

IID

Interaural intensity difference.

ITD

Interaural time difference.

j.d.

Judgement decision: a dimensionless quotient in which the energy

difference of the two ear signals is divided by their energy sum.

JND

Just-noticeable difference. An experimental method of determining

auditory sensitivity.

KEMAR

Knowles Electronics Manikin for Acoustic Research. A dummy recording

head and torso.

lateralisation

The localisation of a sound expressed as an angle relative to the aural axis.

LEV

Listener envelopment. A secondary spatial attribute.

melodica

A blown instrument with vibrating metal reeds and piano-style keys. Its

sound is similar to that of a mouth-organ.
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MFLOPS

Millions of floating-point operations per second. An approximate

indication of processing speed or computational demand.

pinna

The external, visible part of the outer ear.

precedence effect

A low-level, fast-acting, short-lived form of echo suppression (q.v.). As a

result of this phenomenon, the localisation cues of early reflections do not

have the perceived strength of those from the direct sound.

pre-masking

The phenomenon by which an otherwise audible auditory event is

rendered inaudible by the presence a louder event that slightly precedes it.

reversal

A specific problem in binaural localisation. A reversal has occurred when

the sound source is localised in front of a listener when it has actually been

placed behind, or vice versa.

room radius

The distance between a source and observer in a given room, at which the

direct sound energy equals the incident reverberant sound energy.

secondary spatial attribute

A spatial attribute of sound other than source direction (the primary spatial

attribute).

SSP

Spatial sampling period, equal in this algorithm to one period of a 2.45kHz

cycle (approximately 410µs).

tamborim

A small frame drum used in samba percussion. It has no snares or jingles,

so it produces an impulsive, slightly tuned sound.
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